Consequences of phenological shifts and a compressed breeding period in Magellanic penguins

Ecology ◽  
2021 ◽  
Author(s):  
Caroline D. Cappello ◽  
P. Dee Boersma
2018 ◽  
Vol 210 ◽  
pp. 109-122 ◽  
Author(s):  
Fernanda Pinto Marques ◽  
Luis Gustavo Cardoso ◽  
Manuel Haimovici ◽  
Leandro Bugoni

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1639
Author(s):  
Miguel Lao-Pérez ◽  
Diaa Massoud ◽  
Francisca M. Real ◽  
Alicia Hurtado ◽  
Esperanza Ortega ◽  
...  

Most mammalian species of the temperate zones of the Earth reproduce seasonally, existing a non-breeding period in which the gonads of both sexes undergo functional regression. It is widely accepted that photoperiod is the principal environmental cue controlling these seasonal changes, although several exceptions have been described in other mammalian species in which breeding depends on cues such as food or water availability. We studied the circannual reproductive cycle in males of the Mediterranean pine vole, Microtus duodecimcostatus, in the Southeastern Iberian Peninsula. Morphological, hormonal, functional, molecular and transcriptomic analyses were performed. As reported for populations of other species from the same geographic area, male voles captured in wastelands underwent seasonal testis regression in summer whereas, surprisingly, those living either in close poplar plantations or in our animal house reproduced throughout the year, showing that it is the microenvironment of a particular vole subpopulation what determines its reproductive status and that these animals are pure opportunistic, photoperiod-independent breeders. In addition, we show that several molecular pathways, including MAPK, are deregulated and that the testicular “immune privilege” is lost in the inactive testes, providing novel mechanisms linking seasonal testosterone reduction and testis regression.


2021 ◽  
Vol 168 (8) ◽  
Author(s):  
Melina Barrionuevo ◽  
Valentina Ferretti ◽  
Javier Ciancio ◽  
Esteban Frere

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Ljiljana Brbaklić ◽  
Dragana Trkulja ◽  
Sanja Mikić ◽  
Milan Mirosavljević ◽  
Vojislava Momčilović ◽  
...  

Determination of genetic diversity and population structure of breeding material is an important prerequisite for discovering novel and valuable alleles aimed at crop improvement. This study’s main objective was to characterize genetic diversity and population structure of a collection representing a 40-year long historical period of barley (Hordeum vulgare L.) breeding, using microsatellites, pedigree, and phenotypic data. The set of 90 barley genotypes was phenotyped during three growing seasons and genotyped with 338 polymorphic alleles. The indicators of genetic diversity showed differentiation changes throughout the breeding periods. The population structure discriminated the breeding material into three distinctive groups. The principal coordinate analysis grouped the genotypes according to their growth habit and row type. An analysis of phenotypic variance (ANOVA) showed that almost all investigated traits varied significantly between row types, seasons, and breeding periods. A positive effect on yield progress during the 40-year long breeding period could be partly attributed to breeding for shorter plants, which reduced lodging and thus provided higher yield stability. The breeding material revealed a considerable diversity level based on microsatellite and phenotypic data without a tendency of genetic erosion throughout the breeding history and implied dynamic changes in genetic backgrounds, providing a great gene pool suitable for further barley improvement.


Author(s):  
Robert Patchett ◽  
Alexander N. G. Kirschel ◽  
Joanna Robins King ◽  
Patrick Styles ◽  
Will Cresswell

AbstractFemale song is widespread across bird species yet rarely reported. Here, we report the first observations and description of female song in the Cyprus Wheatear Oenanthe cypriaca and compare it to male song through the breeding season. Twenty-five percent of colour-ringed females were observed singing at least once, predominantly in April, compared to 71% of males that continued singing through the breeding period. We suggest that female song may have multiple functions in this species, but it may be especially important in territorial defence and mate acquisition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ameli Kirse ◽  
Sarah J. Bourlat ◽  
Kathrin Langen ◽  
Vera G. Fonseca

AbstractForest habitats host enormous diversity, but little is known about the seasonal turnover of arthropod species between the above- and below ground forest layers. In this study, we used metabarcoding approaches to uncover arthropod diversity in different forest types and seasons. Our study shows that metabarcoding soil eDNA and Malaise trap bulk samples can provide valuable insights into the phenology and life cycles of arthropods. We found major differences in arthropod species diversity between soil samples and Malaise traps, with only 11.8% species overlap. Higher diversity levels were found in Malaise traps in summer whereas soil samples showed a diversity peak in winter, highlighting the seasonal habitat preferences and life strategies of arthropods. We conclude that collecting time series of bulk arthropod samples and eDNA in the same locations provides a more complete picture of local arthropod diversity and turnover rates and may provide valuable information on climate induced phenological shifts for long-term monitoring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshihiko Nanasato ◽  
Masafumi Mikami ◽  
Norihiro Futamura ◽  
Masaki Endo ◽  
Mitsuru Nishiguchi ◽  
...  

AbstractCryptomeria japonica (Japanese cedar or sugi) is one of the most important coniferous tree species in Japan and breeding programs for this species have been launched since 1950s. Genome editing technology can be used to shorten the breeding period. In this study, we performed targeted mutagenesis using the CRISPR/Cas9 system in C. japonica. First, the CRISPR/Cas9 system was tested using green fluorescent protein (GFP)-expressing transgenic embryogenic tissue lines. Knock-out efficiency of GFP ranged from 3.1 to 41.4% depending on U6 promoters and target sequences. The GFP knock-out region was mottled in many lines, indicating genome editing in individual cells. However, in 101 of 102 mutated individuals (> 99%) from 6 GFP knock-out lines, embryos had a single mutation pattern. Next, we knocked out the endogenous C. japonica magnesium chelatase subunit I (CjChlI) gene using two guide RNA targets. Green, pale green, and albino phenotypes were obtained in the gene-edited cell lines. Sequence analysis revealed random deletions, insertions, and replacements in the target region. Thus, targeted mutagenesis using the CRISPR/Cas9 system can be used to modify the C. japonica genome.


2012 ◽  
Vol 112 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Andrea Raya Rey ◽  
Klemens Pütz ◽  
Gabriela Scioscia ◽  
Benno Lüthi ◽  
Adrián Schiavini

Sign in / Sign up

Export Citation Format

Share Document