Use of Secondary Additives in Fly ash based Soil Stabilization for Soft Subgrades

2021 ◽  
pp. 100585
Author(s):  
Hadi Karami ◽  
Jaspreet Pooni ◽  
Dilan Robert ◽  
Susanga Costa ◽  
Jie. Li ◽  
...  
Keyword(s):  
Fly Ash ◽  
2020 ◽  
Vol 57 (9) ◽  
pp. 1356-1368 ◽  
Author(s):  
Hayder H. Abdullah ◽  
Mohamed A. Shahin ◽  
Megan L. Walske ◽  
Ali Karrech

Traditional soil stabilization by chemical additives such as cement and lime is a well-established technique for ground improvement of problematic soils. However, with the advantage of lower carbon emission and energy consumption, fly-ash-based geopolymer has recently become an attractive alternative to traditional stabilizers. Nevertheless, the literature lacks systemic approaches that assist engineers to apply this promising binder for soil stabilization, including the proper dosages required for an effective treatment. This paper introduces a systematic approach to assess the applicability of fly-ash-based geopolymer for stabilization of clay soils, through a comprehensive experimental program where engineered and natural clays were examined and evaluated, including soil compaction, plasticity, compressive strength, durability, pH level, and impact of pulverization. The results revealed several factors that influence the level of enhancement of geopolymer-treated clays, including the soil mineralogy, plasticity–activity properties, geopolymer concentration, curing time, and pulverization.


Author(s):  
Prerna Priya ◽  
Ran Vijay Singh

Expansive Black cotton clay soils are widely distributed worldwide, and are a significant damage to infrastructure and buildigs.It is a common practice around the world to stabilize black cotton soil using fly ash to improve the strength of stabilized sub- base and sub grade soil. Soil stabilization is the improvement of strength or bearing capacity of soil by controlled compaction, proportioning or addition of suitable admixtures or stabilizers. The Black cotton soils are extremely hard when dry, but lose its strength fully when in wet condition. In monsoon they guzzle water and swell and in summer they shrink on evaporation of water from there. Because of its high Swelling and shrinkage characteristics the black cotton soils has been a challenge to the highway engineers.So in this research paper fly ash has been used to improve the various strength properties of natural black cotton soil.The objective of this research paper is to improve the engineering properties of black cotton soil by adding different percentage of fly ash by the weight of soil and make it suitable for construction. A series of standard Proctor tests (for calculation of MDD and OMC) and California Bearing Ratio (C.B.R) tests are conducted on both raw Black cotton soil and mixed soil with different percentages of fly ash (5%, 10%, 20%, 30%) by weight. A comparison between properties of raw black cotton soil, black cotton soil mixed with fly ash are performed .It is found that the properties of black cotton soil mixed with fly ash are suitably enhanced.


Author(s):  
Pratiksha R. Patil

Abstract: Soil stabilization has become the more issue in construction activity. In this study we focus on improvement of soil by using Fly ash and ground granulated blast furnace slag (GGBS). In many villages there was demolition of houses due to flood situation and landslide so stabilization of soil is very important factor in this area. In these studies we use local Fly ash and Ground granulated blast furnace slag (GGBS) for stabilization of soil. Soil are generally stabilized to increase their strength and durability or to prevent soil erosion. The properties of soil vary a great deal at different places or in certain cases even at one place the success of soil stabilization depends on soil testing. Various methods are there to stabilize soil and the method should be verified in the lab with the soil material before applying it on the field. The various percentages of Fly ash and GGBS were mixed with soil sample to conduct soil test. Using fly ash reduces the plasticity index which has potential impact on engineering properties also GGBS has cementations property which acts as binding material for the soil. On addition of 15% Fly ash and 5% GGBS increase the strength of soil (according to IS2720:1985) it’s recommended for better result. Keywords: Stabilization of soil, Fly ash, GGBS, Black cotton soil, Soil test.


Author(s):  
Syafiadi Rizki Abdila ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Muhammad Faheem Mohd Tahir ◽  
Romisuhani Ahmad ◽  
Syafwandi ◽  
...  
Keyword(s):  
Fly Ash ◽  

2020 ◽  
Vol 12 (17) ◽  
pp. 7226 ◽  
Author(s):  
Nishantha Bandara ◽  
Hiroshan Hettiarachchi ◽  
Elin Jensen ◽  
Tarik H. Binoy

The State of Michigan in the United States often encounters weak soil subgrades during its road construction and maintenance activities. Undercutting has been the usual solution, while a very few attempts of in-situ soil stabilization with cement or lime have been made. Compared to the large volume of weak soils that require improvement and the cost incurred on an annual basis, some locally available industrial byproducts present the potential to become effective soil subgrade stabilizers and a better solution from the sustainability perspective as well. The candidate industrial byproducts are Cement Kiln Dust (CKD), Lime Kiln Dust (LKD), and Fly Ash (FA), out of which only a fraction is currently used for any other secondary purposes while the rest is disposed of in Michigan landfills. This manuscript describes a laboratory investigation conducted on above industrial byproducts and/or their combinations to assess their suitability to be used as soil subgrade stabilizers in three selected weak soil types often found in Michigan. Results reveal that CKD or a combination of FA/LKD can be recommended for the long-term soil subgrade stabilization of all three soil types tested, while FA and LKD can be used in some soil types as a short-term soil stabilizer (for construction facilitation). A brief discussion is also presented at the end on the potential positive impact that can be made by the upcycling of CKD/LKD/FA on sustainability.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3018 ◽  
Author(s):  
Mirjana Vukićević ◽  
Miloš Marjanović ◽  
Veljko Pujević ◽  
Sanja Jocković

Major infrastructure projects require significant amount of natural materials, often followed by the soft soil stabilization using hydraulic binders. This paper presents the results of a laboratory study of alternative waste materials (fly ash and slag) that can be used for earthworks. Results of high plasticity clay stabilization using fly ash from Serbian power plants are presented in the first part. In the second part of the paper, engineering properties of ash and ash-slag mixtures are discussed with the emphasis on the application in road subgrade and embankment construction. Physical and mechanical properties were determined via following laboratory tests: Specific gravity, grain size distribution, the moisture–density relationship (Proctor compaction test), unconfined compressive strength (UCS), oedometer and swell tests, direct shear and the California bearing ratio (CBR). The results indicate the positive effects of the clay stabilization using fly ash, in terms of increasing strength and stiffness and reducing expansivity. Fly ashes and ash-slag mixtures have also comparable mechanical properties with sands, which in combination with multiple other benefits (lower energy consumption and CO2 emission, saving of natural materials and smaller waste landfill areas), make them suitable fill materials for embankments, especially considering the necessity for sustainable development.


Sign in / Sign up

Export Citation Format

Share Document