Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste

2020 ◽  
Vol 17 ◽  
pp. 100497 ◽  
Author(s):  
A.A.P. Susastriawan ◽  
Purnomo ◽  
Aris Sandria
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2020 ◽  
Vol 6 (10) ◽  
pp. 1932-1943
Author(s):  
Alvin Joseph Santos Dolores ◽  
Jonathan David Lasco ◽  
Timothy M. Bertiz ◽  
Kimjay M. Lamar

Infusing plastic waste to concrete and masonry structures is an increasingly common industry practice that has the potential to create an environment-friendly material that can improve some of the material’s properties, craft a novel means to repurpose plastic waste, and reduce the need for mining aggregates in the environment. This concept has been studied extensively in different forms of concrete, as shown by several studies; however, there is a dearth of studies focusing on the incorporation plastic waste in concrete hollow blocks (CHB). In this study, we aim to fill that gap by investigating on the effects of incorporating low-density polyethylene (LDPE), a commonly used plastic material, to CHB on its compressive strength and bulk density. Samples of varying percentages of LDPE replacement by volume (0, 10, 20, 30 and 40%) were fabricated and tested. Results showed a general trend of decreasing compressive strength and bulk density upon increasing the amount of LDPE pellets in CHB, which was also observed in previous studies. However, the compressive strength of CHB increased at 10% LDPE replacement, a result similar to a previous study. It was inferred that the strength of the plastic material could have a direct contribution to the compressive strength of CHB at low percentage of aggregate replacement. Statistical analysis showed that the mix with 10% LDPE pellets as replacement to sand was the best among the samples tested. It was shown that CHB infused with LDPE pellets has a higher compressive strength than what is normally used in the Philippines. It was concluded that based on compressive strength and bulk density, LDPE pellets is a viable material to use as partial replacement to sand in non-load bearing CHB.


Sign in / Sign up

Export Citation Format

Share Document