ZnO nanostructured film deposition using the separated pulsed laser deposition (SPLD) assisted by electric and magnetic drift motion

2007 ◽  
Vol 515 (16) ◽  
pp. 6368-6370 ◽  
Author(s):  
Kenji Ebihara ◽  
Sang-Moo Park ◽  
Koji Fujii ◽  
Tomoaki Ikegami
2021 ◽  
pp. 93-96
Author(s):  
Yu.V. Panfilov

The most known methods of pulsed thin strengthening nanostructured film deposition such as magnetron sputtering HiPIMS, pulsed laser deposition PLD, vacuum arc pulsed deposition, high-intensity pulsed ion beams deposition HIPIB, as well, were described and analysed. It was shown that the stream of material, generated by means of a pulsed action, impacts to substrate and creates preconditions for nanocrystalline amorphous coating manufacture with superhigh hardness.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (2) ◽  
pp. 30-36 ◽  
Author(s):  
Jeff Cheung ◽  
Jim Horwitz

The laser, as a source of “pure” energy in the form of monochromatic and coherent photons, is enjoying ever increasing popularity in diverse and broad applications from drilling micron-sized holes on semiconductor devices to guidance systems used in drilling a mammoth tunnel under the English Channel. In many areas such as metallurgy, medical technology, and the electronics industry, it has become an irreplaceable tool.Like many other discoveries, the various applications of the laser were not initially defined but were consequences of natural evolution led by theoretical studies. Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser beam-solid interactions. Experiments were undertaken to verify different theoretical models for this process. Later, these experiments became the pillars of many applications. Figure 1 illustrates the history of laser development from its initial discovery to practical applications. In this tree of evolution, Pulsed Laser Deposition (PLD) is only a small branch. It remained relatively obscure for a long time. Only in the last few years has his branch started to blossom and bear fruits in thin film deposition.Conceptually and experimentally, PLD is extremely simple, probably the simplest among all thin film growth techniques. Figure 2 shows a schematic diagram of this technique. It uses pulsed laser radiation to vaporize materials and to deposit thin films in a vacuum chamber. However, the beam-solid interaction that leads to evaporation/ablation is a very complex physical phenomenon. The theoretical description of the mechanism is multidisciplinary and combines equilibrium and nonequilibrium processes. The impact of a laser beam on the surface of a solid material, electromagnetic energy is converted first into electronic excitation and then into thermal, chemical, and even mechanical energy to cause evaporation, ablation, excitation, and plasma formation.


2013 ◽  
Vol 789 ◽  
pp. 72-75
Author(s):  
Pia Dinari ◽  
Christian Chandra ◽  
Joko Suwardy ◽  
Salim Mustofa ◽  
Yudi Darma

Strontium titanate (SrTiO3) thin film has been deposited on Si (100) substrate using pulsed laser deposition technique. Film deposition was carried out at low temperature (150°C) by maintained the pressure at 10-4 Torr. Nanometer-thick SrTiO3 film on Si substrate was characterized using SEM, AFM, XRD, and Raman Spectroscopy. SEM and AFM images show that SrTiO3 film has growth on Si substrate uniformly. Raman and XRD spectroscopy also support the growth of SrTiO3 film on Si substrate. Furthermore, to investigate the effect of post-deposition thermal annealing, the samples were annealed up to 900°C. Thermal stability of SrTiO3/Si structure was studied by mean XRD spectra. The X-Ray Diffraction pattern indicates the crystallinity improvement through atomic arrangements during thermal annealing process.


1995 ◽  
Vol 395 ◽  
Author(s):  
Robert Leuchtner ◽  
W. Brock ◽  
Y. Li ◽  
L. Hristakos

ABSTRACTOriented GaN has been successfully grown at low substrate temperatures (∼480°C) on a- and r-planes of sapphire, using the pulsed laser deposition process. We have examined the effects of several deposition parameters on film growth, including substrate temperature (∼50–500°C), ambient pressure (1×10−3 – 10 torr of NH3), and target material (Ga or GaN). The film deposition rate was typically ∼3–4 μm/hr. Film characterization was performed using x-ray diffraction (XRD), optical microscopy, x-ray photoelectron spectrometry (XPS), and atomic force microscopy (AFM). In the case of the Ga metal target, a plasma (∼500V) between the target and substrate was necessary to promote formation of the GaN phase. The ammonia ambient enhanced the nitrogen content in the films compared to vacuum deposition. In general, the GaN target yielded better quality films (smaller rocking curve widths and smoother film morphology) compared to the Ga metal target. These results suggest that pulsed laser deposition is a promising approach to fabricating high quality films of this potentially important semiconducting material.


1995 ◽  
Vol 414 ◽  
Author(s):  
J. A. Conklin ◽  
C. M. Cotell ◽  
T. W. Barnett ◽  
D. C. Hansen

AbstractThin films of collagen were prepared by pulsed laser deposition (PLD) at room temperature on Si substrates using a KrF laser (248 nm) over a fluence range from 0.2–1.5 Jcm-2. The effects on film composition and morphology of ambient gas (Ar, Ar/H2O vapor), quenching atmosphere (Ar, Ar/H2O vapor), and fluence were examined. Fourier transform infrared spectroscopy (FT- IR) demonstrated that, independent of deposition parameter, the PLD films contained the characteristic Amide I and II functionalities of the collagen target and indicated that the secondary structure was altered by the PLD process. The surface morphology of the films was a function of the laser fluence and the gas environment during either film deposition or quenching at the end of deposition. Preliminary gel electrophoresis examination of deposited films suggested the collagen had not maintained the triple helical structure of the native collagen. X-Ray diffraction (XRD) indicated that all of the films, deposited under any conditions, were predominantly amorphous.


2000 ◽  
Vol 616 ◽  
Author(s):  
J.S. Pelt ◽  
R. Magahñ;a ◽  
M.E. Ramsey ◽  
E. Poindexter ◽  
S. Atwell ◽  
...  

AbstractThere is a great deal of interest in thin film deposition techniques which can achieve good crystal quality at low substrate temperatures. Pulsed laser deposition (PLD), well-known as a reliable technique for fabrication of high critical temperature superconductor thin films, has a number of characteristics which may make it suitable for such applications. In particular, PLD is characterized by a relatively large average species energy, which can be controlled by the laser fluence at the target. This paper describes the growth of silicon on silicon films using PLD over substrate temperatures between 500 and 700 °C, and in-situ characterization using reflection high-energy electron diffraction (RHEED). Transmission electron microscopy confirms the growth of single crystal oriented films, and atomic force microscopy indicates smooth films with an rms surface roughness of less than 2 Å


1994 ◽  
Vol 354 ◽  
Author(s):  
William T. Laughlin ◽  
Edmond Y. Lo

AbstractA numerical simulation of the pulsed laser deposition process has been developed. This model is applied to pulsed laser deposition of carbon, a solid lubricant material. At laser fluences above the ablation threshold, the vapor density and temperature at the substrate are sufficiently high that a continuum flow exists. For typical pulsed laser deposition parameters, plume vapor temperatures and densities are insufficient for significant ionization. However, plume absorption does take place and is regulated by wavelength dependent absorption cross sections of the molecular species. Vapor expansion velocities depend on the absorption of laser radiation and thus the laser wavelength. A simple kinetic theory of deposition predicts the film deposition rate and film thickness profile.


1995 ◽  
Vol 382 ◽  
Author(s):  
R. Dietsch ◽  
TH. Holz ◽  
R. Krawietz ◽  
H. Mai ◽  
B. SchÖneich ◽  
...  

ABSTRACTPulsed Laser Deposition (PLD) is used for the preparation of Ni/C, W/C, and Mo/Si multilayers having X-ray optical quality. For the synthesis of layer stacks involving a uniform or a graded thickness distribution across 4"-wafers the conventional thin film deposition equipment of PLD has been modified. This modification provides a precise spatial control of the plasma plume orientation in the deposition chamber. With this arrangement the emission characteristic of the plasma source can be computer controlled and the desired coating profile can be tailored across an extended substrate via a stepper-motor-driven target manipulator.Thus film thickness uniformity (δts < 2%) is obtained on substrates up to 4" diameter even for smaller target-substrate distances. For laterally graded Ni and C individual layers linear thickness gradients of dts/dx = 3.2 × 10−8 were confirmed over the total substrate length by spectroscopic ellipsometry. The parameters deduced from single layer deposition were applied for the synthesis of laterally graded Ni/C multilayers. A mean value of the gradient of the stack period thickness dt/dx = 6.2 × 10−8 confirmed by X-ray reflectometry (nominal value: dt0 /dx = 6.4×10−8 ) characterizes precision and reproducibility of the coating process.


Sign in / Sign up

Export Citation Format

Share Document