SrTiO3 Thin Films Deposition Using Pulsed Laser Deposition Technique

2013 ◽  
Vol 789 ◽  
pp. 72-75
Author(s):  
Pia Dinari ◽  
Christian Chandra ◽  
Joko Suwardy ◽  
Salim Mustofa ◽  
Yudi Darma

Strontium titanate (SrTiO3) thin film has been deposited on Si (100) substrate using pulsed laser deposition technique. Film deposition was carried out at low temperature (150°C) by maintained the pressure at 10-4 Torr. Nanometer-thick SrTiO3 film on Si substrate was characterized using SEM, AFM, XRD, and Raman Spectroscopy. SEM and AFM images show that SrTiO3 film has growth on Si substrate uniformly. Raman and XRD spectroscopy also support the growth of SrTiO3 film on Si substrate. Furthermore, to investigate the effect of post-deposition thermal annealing, the samples were annealed up to 900°C. Thermal stability of SrTiO3/Si structure was studied by mean XRD spectra. The X-Ray Diffraction pattern indicates the crystallinity improvement through atomic arrangements during thermal annealing process.

2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


1995 ◽  
Vol 414 ◽  
Author(s):  
J. A. Conklin ◽  
C. M. Cotell ◽  
T. W. Barnett ◽  
D. C. Hansen

AbstractThin films of collagen were prepared by pulsed laser deposition (PLD) at room temperature on Si substrates using a KrF laser (248 nm) over a fluence range from 0.2–1.5 Jcm-2. The effects on film composition and morphology of ambient gas (Ar, Ar/H2O vapor), quenching atmosphere (Ar, Ar/H2O vapor), and fluence were examined. Fourier transform infrared spectroscopy (FT- IR) demonstrated that, independent of deposition parameter, the PLD films contained the characteristic Amide I and II functionalities of the collagen target and indicated that the secondary structure was altered by the PLD process. The surface morphology of the films was a function of the laser fluence and the gas environment during either film deposition or quenching at the end of deposition. Preliminary gel electrophoresis examination of deposited films suggested the collagen had not maintained the triple helical structure of the native collagen. X-Ray diffraction (XRD) indicated that all of the films, deposited under any conditions, were predominantly amorphous.


2014 ◽  
Vol 32 (4) ◽  
pp. 541-546 ◽  
Author(s):  
P. Nagaraju ◽  
Y. Vijayakumar ◽  
D. Phase ◽  
V. Reddy ◽  
M. Ramana Reddy

AbstractMicrostructural properties of Ce1-x GdxO2-δ (x = 0 to 0.3) thin films prepared by pulsed laser deposition technique were studied. The thin films were deposited on Si(100) substrate at a substrate temperature of 973 K at the oxygen partial pressure of 0.2 Pa using KrF excimer laser with energy of 220 mJ. The prepared thin films were characterized by X-ray diffraction, Raman spectroscopy and atomic force microscopy. X-ray diffraction analysis confirmed the polycrystalline nature of the thin films. Crystallite size, strain and dislocation density were calculated. The Raman studies revealed the formation of Ce-O with the systematic variation of peak intensity and full width half maxima depending on concentration of gadolinium dopant. The thickness of the films was estimated using Talystep profiler. The surface roughness was estiamted based on AFM.


2008 ◽  
Vol 1074 ◽  
Author(s):  
Doina Craciun ◽  
Gabriel Socol ◽  
Emanuel Axente ◽  
Aurelian-Catalin Galca ◽  
Rajiv Singh ◽  
...  

ABSTRACTThe crystalline structure, composition, chemical bonding and thermal stability of HfO2-Al2O3 mixtures deposited on Si using a combinatorial pulsed laser deposition technique were investigated. After deposition some films were annealed at temperatures from 850 to 950 °C for 6 or 12 minutes. Grazing incidence x-ray diffraction investigations were performed to asses the crystallinity and thermal stability of the annealed layers. Measurements of the Al to Hf ratios were performed using energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. From simulations of the x-ray reflectivity and spectroscopic ellipsometry spectra the phase composition and thickness of the films was calculated and then the Al to Hf ratios. Al/Hf values of 1 and 8 were found to be necessary to block the crystallization of the films after anneals at 850 and 950 °C, respectively.


2008 ◽  
Vol 373-374 ◽  
pp. 142-145
Author(s):  
Hong Xia Li ◽  
Ren Guo Song ◽  
Xin Wu ◽  
Ji Yang Wang

High quality Nd:YVO4 thin films were fabricated successfully by using a pulsed laser deposition technique. The properties of the samples were characterized by using X-ray diffraction, atomic force microscopy, and prism-coupling measurements. According to above discussion, we concluded the optimal preparation conditions for Nd:YVO4 films prepared on Si/SiO2 substrates.


2002 ◽  
Vol 748 ◽  
Author(s):  
Akira Shibuya ◽  
Minoru Noda ◽  
Masanori Okuyama

ABSTRACTC axis-oriented Bi4Ti3O12–SrBi4Ti4O15 (B IT-SB Ti) intergrowth epitaxial ferroelectric thin films have been grown by pulsed laser deposition (PLD) method on MgO (001) and SrTiO3 (001) substrates. The epitaxial growth of BIT-SBTi intergrowth thin films were confirmed by X-ray diffraction (XRD) θ-2θ scan, pole figure plots and reciprocal space mappings. The c axis lattice constant of the BIT-SBTi intergrowth thin film is very close to that of made up of regular stacking of one-halves of the unit cells of Bi4Ti3O12 (3.296 nm) and SrBi4Ti4O15 (4.189 nm). The annealed BIT-SBTi thin film on Pt/Ti/SiO2/Si substrate shows intergrowth structure, too, and exhibits superior ferroelectricity that the values of 2Pr and 2Ec are 32.0 μC/cm2 and 190 kV/cm, respectively. The annealed BIT-SBTi film shows that the degradation of switching charge after 1×1010 switching cycles was 16.5%. This ferroelectric enhancement is attributed to strain of pseudo-perovskite layers interacting through Bi2O2 layer. The dielectric constant and dielectric loss of the annealed BIT-SBTi film were 433 and 0.037, respectively.


2002 ◽  
Vol 720 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
Daniel M. Potrepka ◽  
Steven C. Tidrow

AbstractFerroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


Sign in / Sign up

Export Citation Format

Share Document