Transparent conductive film by large area roll-to-roll processing

2013 ◽  
Vol 544 ◽  
pp. 427-432 ◽  
Author(s):  
Linda Y.L. Wu ◽  
W.T. Kerk ◽  
C.C. Wong
2012 ◽  
Vol 22 (35) ◽  
pp. 18283 ◽  
Author(s):  
Jia Zhang ◽  
PingAn Hu ◽  
Xiaona Wang ◽  
Zhenlong Wang ◽  
Danqin Liu ◽  
...  

2013 ◽  
Vol 102 (2) ◽  
pp. 023112 ◽  
Author(s):  
Toshiyuki Kobayashi ◽  
Masashi Bando ◽  
Nozomi Kimura ◽  
Keisuke Shimizu ◽  
Koji Kadono ◽  
...  

2020 ◽  
Vol 25 ◽  
pp. 101551
Author(s):  
Dengyang Li ◽  
Tao Li ◽  
Junli Zhang ◽  
Qing Xu ◽  
Hao-Yang Mi ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 671
Author(s):  
Lipeng Zhou ◽  
Yuehui Hu ◽  
Hao Gao ◽  
Youliang Gao ◽  
Wenjun Zhu ◽  
...  

Silver nanowire (AgNWs) transparent conductive film (TCF) is considered to be the most favorable material to replace indium tin oxide (ITO) as the next-generation transparent conductive film. However, the disadvantages of AgNWs, such as easy oxidation and high wire-wire junction resistance, dramatically limit its commercial application. In this paper, moisture treatment was adopted, and water was dripped on the surface of AgNWs film or breathed on the surface so that the surface was covered with a layer of water vapor. The morphology of silver nanowire mesh nodes is complex, and the curvature is large. According to the capillary condensation theory, water molecules preferentially condense near the geometric surface with significant curvature. The capillary force is generated, making the wire-wire junction of AgNWs mesh bond tightly, resulting in good ohmic contact. The experimental results show that AgNWs-TCF treated by moisture has better conductivity, with an average sheet resistance of 20 Ω/sq and more uniform electrical properties. The bending test and adhesion test showed that AgNWs-TCF treated by moisture still exhibited good mechanical bending resistance and environmental stability.


2014 ◽  
Vol 997 ◽  
pp. 368-370
Author(s):  
Ping Zhong ◽  
Lin Xiu Cheng ◽  
Xing Lu

In this paper,ZnO/PANI transparent conductive film has been prepared by in situ chemical oxidative polymerization, APS as an oxidant. The conductivity and transmittance of ZnO/PANI was measured. It has been investigated of the effects of reaction conditions and the doping component on conductivity, transmissivity and adhesion. With the increase of doping ZnO, the conductivity of ZnO/PANI transparent conductive film, transmittance and adhesion reduced. The optimal conditions is that the concentration of An, APS and PVA are 0.75 mol / L, 0.8 mol / L and 0.5wt%, respectively.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


Sign in / Sign up

Export Citation Format

Share Document