Effect of nitrogen flow rate on structure and mechanical properties of Mo–Al–Si–N films prepared by direct current magnetron sputtering

2015 ◽  
Vol 594 ◽  
pp. 18-23 ◽  
Author(s):  
Zhigang Yuan ◽  
Li Sun ◽  
Qianfeng Fang ◽  
Wenbang Gong ◽  
Xiao Wu ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Wei Lin ◽  
Chia-Wei Lu ◽  
Ge-Ping Yu ◽  
Jia-Hong Huang

This study aims to investigate the effects of nitrogen flow rate (0–2.5 sccm) on the structure and properties of TiZrN films. Nanocrystalline TiZrN thin films were deposited on Si (001) substrates by unbalanced magnetron sputtering. The major effects of the nitrogen flow rate were on the phase, texture, N/(Ti + Zr) ratio, thickness, hardness, residual stress, and resistivity of the TiZrN films. The nitrogen content played an important role in the phase transition. With increasing nitrogen flow rate, the phase changed from mixed TiZr and TiZrN phases to a single TiZrN phase. The X-ray diffraction results indicated that (111) was the preferred orientation for all TiZrN specimens. The N/(Ti + Zr) ratio of the TiZrN films first increased with increasing nitrogen flow rate and then stabilized when the flow rate further increased. When the nitrogen flow rate increased from 0.4 to 1.0 sccm, the hardness and residual stress of the TiZrN thin film increased, whereas the electrical resistivity decreased. None of the properties of the TiZrN thin films changed with nitrogen flow rate above 1.0 sccm because the films contained a stable single phase (TiZrN). At high nitrogen flow rates (1.0–2.5 sccm), the average hardness and resistivity of the TiZrN thin films were approximately 36 GPa and 36.5 μΩ·cm, respectively.


2019 ◽  
Vol 42 (5) ◽  
Author(s):  
Dhruva Kumar ◽  
Ranjan Kr Ghadai ◽  
Soham Das ◽  
Ashis Sharma ◽  
Bibhu P Swain

2012 ◽  
Vol 19 (03) ◽  
pp. 1250022 ◽  
Author(s):  
YONG-JU ZHANG ◽  
SEN-JIANG YU ◽  
HONG ZHOU ◽  
MIAO-GEN CHEN ◽  
ZHI-WEI JIAO

Tantalum (Ta) films deposited on glass substrates have been prepared by a direct current magnetron sputtering method, and buckling patterns induced by residual compressive stress are investigated in detail. When the film thickness increases, the buckling morphologies evolve from straight-sided buckle network to wavy or wormlike wrinkles gradually, and finally change into telephone cord buckles. The geometrical parameters of the buckling patterns are found to increase linearly with the film thickness. Based on the geometrical parameters of the buckling patterns, the mechanical properties of the Ta films are also discussed in the frame of continuum elastic theory.


Sign in / Sign up

Export Citation Format

Share Document