Micro-networked metal coating using self-cracked WO3 inorganic thin film as sacrificial layer: Application to transparent flexible electrodes

2021 ◽  
Vol 736 ◽  
pp. 138916
Author(s):  
Noeul Kim ◽  
Youngho Kim ◽  
Jung Been Park ◽  
Hyeon Ho Cho ◽  
Dong kyu Lee ◽  
...  
Nano Research ◽  
2021 ◽  
Author(s):  
Emma N. Welbourne ◽  
Tarun Vemulkar ◽  
Russell P. Cowburn

AbstractSynthetic antiferromagnetic (SAF) particles with perpendicular anisotropy display a number of desirable characteristics for applications in biological and other fluid environments. We present an efficient and effective method for the patterning of ultrathin Ruderman-Kittel-Kasuya-Yoshida coupled, perpendicularly magnetised SAFs using a combination of nanosphere lithography and ion milling. A Ge sacrificial layer is utilised, which provides a clean and simple lift-off process, as well as maintaining the key magnetic properties that are beneficial to target applications. We demonstrate that the method is capable of producing a particularly high yield of well-defined, thin film based nanoparticles.


2018 ◽  
Vol 112 (15) ◽  
pp. 152104 ◽  
Author(s):  
Sung Jin Kim ◽  
Hyung Tae Kim ◽  
Jong Hoon Choi ◽  
Ho Kyoon Chung ◽  
Sung Min Cho

2016 ◽  
Vol 6 (21) ◽  
pp. 1601269 ◽  
Author(s):  
Jiyoon Nam ◽  
Youngjoo Lee ◽  
Wonjung Choi ◽  
Chang Su Kim ◽  
Hogyoung Kim ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2133 ◽  
Author(s):  
Anna Persano ◽  
Fabio Quaranta ◽  
Antonietta Taurino ◽  
Pietro Aleardo Siciliano ◽  
Jacopo Iannacci

In this work, SiNx/a-Si/SiNx caps on conductive coplanar waveguides (CPWs) are proposed for thin film encapsulation of radio-frequency microelectromechanical systems (RF MEMS), in view of the application of these devices in fifth generation (5G) and modern telecommunication systems. Simplification and cost reduction of the fabrication process were obtained, using two etching processes in the same barrel chamber to create a matrix of holes through the capping layer and to remove the sacrificial layer under the cap. Encapsulating layers with etch holes of different size and density were fabricated to evaluate the removal of the sacrificial layer as a function of the percentage of the cap perforated area. Barrel etching process parameters also varied. Finally, a full three-dimensional finite element method-based simulation model was developed to predict the impact of fabricated thin film encapsulating caps on RF performance of CPWs.


2011 ◽  
Vol 1321 ◽  
Author(s):  
O. Isabella ◽  
P. Liu ◽  
B. Bolman ◽  
J. Krč ◽  
M. Zeman

ABSTRACTModulated surface-textured substrates for thin-film silicon solar cells exhibiting high haze in a broad range of wavelengths were fabricated. Glass substrates coated with different thicknesses of a sacrificial layer were wet-etched allowing the manipulation of the surface morphology with surface roughness ranging from 200 nm up to 1000 nm. Subsequently, zinc-oxide layers were sputtered and then wet-etched constituting the final modulated textures. The morphological analysis of the substrates demonstrated the surface modulation, and the optical analysis revealed broad angle intensity distributions and high hazes. A small anti-reflective effect with respect to untreated glass was found for etched glass samples. The performance of solar cells on high-haze substrates was evaluated. The solar cells outperformed the reference cell fabricated on a randomly-textured zinc-oxide-coated flat glass. The trend in the efficiency resembled the increased surface roughness and the anti-reflective effect was confirmed also in solar cell devices.


1993 ◽  
Vol 310 ◽  
Author(s):  
Ryouji Asahi ◽  
Jiro Sakata ◽  
Osamu Tabata ◽  
Midori Mochizuki ◽  
Susumu Sugiyama ◽  
...  

AbstractA pyroelectric infrared sensor using a poly(vinylidene fluoride) (PVDF) thin film has been integrated with a read-out circuit on a silicon substrate. The PVDF thin film with a thickness of 1-2 µm was deposited on the sensing area by an electro-spray (ESP) method. A form I crystal and a large pyroelectric coefficient of 4 nCcm−2K−1 were observed just after the deposition without any poling treatments. The fabrication process of the sensor was based on a standard MOS LSI process and a polysilicon sacrificial layer etching technique. In order to reduce the heat capacitance and the thermal conduction, the PVDF thin film was supported on a thin Si3N4 membrane structure formed by etching a part of the silicon substrate under the sensing area. The sensor with a sensing area of 400x400 µm2 had a responsivity of 98 V/W, a detectivity of l.4× 107 cmHz1/2W−1, an NEP of 2.9× 10−99 Hz1/2W at a frequency of 100 Hz and a time constant of 1.3 msec.


2009 ◽  
Vol 17 (6) ◽  
pp. 20-23 ◽  
Author(s):  
Suhan Kim ◽  
Gao Liu ◽  
Andrew M. Minor

Focused ion beam (FIB) instrumentation has proven to be extremely useful for preparing cross-sectional samples for transmission electron microscopy (TEM) investigations. The two most widely used methods involve milling a trench on either side of an electron-transparent window: the “H-bar” and the “lift-out” methods [1]. Although these two methods are very powerful in their versatility and ability to make site-specific TEM samples, they rely on using a sacrificial layer to protect the surface of the sample as well as the removal of a relatively large amount of material, depending on the size of the initial sample. In this article we describe a technique for making thin film cross-sections with the FIB, known as Shadow FIBing, that does not require the use of a sacrificial layer or long milling times [2].


Sign in / Sign up

Export Citation Format

Share Document