Underground survey to locate weathered bedrock depth using noninvasive microtremor measurements in Jurong sedimentary formation, Singapore

2019 ◽  
Vol 86 ◽  
pp. 10-21 ◽  
Author(s):  
Palanidoss Subramaniam ◽  
Yunhuo Zhang ◽  
Taeseo Ku
2021 ◽  
Author(s):  
Giulia Sgattoni ◽  
Silvia Castellaro

<p>Measuring ground resonances is of great importance for seismic site amplification studies. The task is usually addressed with the common H/V (horizontal to vertical spectral ratio) approach, which is widely used for both microzonation studies and stratigraphic imaging. Peaks on the H/V function are used to identify ground resonance frequencies, usually assuming 1D site conditions, i.e. with plane-parallel stratigraphy. In the simple case of a horizontal soft layer overlying a bedrock, 1D resonance is linked to the local bedrock depth (as a function of the shear wave velocity of the sediment layer). Therefore, when the 1D approximation holds, spatial variations of the resonance frequency reflect changes of bedrock depth (when lateral homogeneity of the sediment cover can be assumed). However, at sites with non-plane subsurface geometries, more complex resonance patterns may develop, such as 2D resonance patterns that typically occur within sediment-filled valleys. In this case, 2D resonance involves simultaneous vibration of the whole sedimentary infill at the same frequency, which may lead to large seismic amplification. 2D ground resonances can no longer be linked to the local depth-to-bedrock directly below the measurement site, but depend on the whole valley geometry and mechanic properties. Distinguishing between the 1D and 2D nature of a site is mandatory to avoid wrong stratigraphic and dynamic interpretations, which is in turn extremely relevant for seismic site response assessment.</p><p>We investigated the problem in the Bolzano sedimentary basin (Northern Italy), which lies at the intersection between three valleys, using a single-station microtremor approach, the same usually applied for H/V surveys. We observed that the footprints of 1D and 2D resonances reside in different behaviors along the three components of motion. This is because, while the dynamic behavior of a 1D-site is the same along all horizontal directions, 2D resonances differ along the longitudinal and transversal directions of the resonating body, e.g. parallel and perpendicular to the valley axis. In addition, 2D resonance modes involve also a vertical component. This implies that the H/V method, by mixing the information along the three components, is not suitable to detect 2D resonances, that can be acknowledged only by looking at the individual spectral components and not at the H/V curves alone.</p><p>By analyzing several hundred single-station microtremor measurements, we identified a list of frequency and amplitude features that characterize 1D and 2D resonances on individual spectral components of motion and on H/V ratios, on a single measurement and on several measurements acquired along profiles across the investigated valleys. We identified valleys characterized by 1D-only, 1D+2D and 2D-only resonance patterns and we propose a workflow scheme to conduct experimental measurements and data analysis in order to directly assess the 1D or 2D resonance nature of a site with a single-station approach, rather than evaluating this indirectly with numerical modelling.</p>


1999 ◽  
Vol 89 (1) ◽  
pp. 250-259
Author(s):  
Malte Ibs-von Seht ◽  
Jürgen Wohlenberg

Abstract The observations about the behavior of microtremor spectra presented here show that noise measurements can be used as a powerful tool to determine the thickness of soft cover layers. The most suitable method for this determination is Nakamura's technique, which is the ratio of the horizontal-component noise spectrum and that of the vertical component (H/V spectrum). The frequency of the main peak in these spectral ratios correlates well with the sediment thickness at the site. Using an extensive database of microtremor measurements carried out in the western Lower Rhine Embayment (Germany), it was possible to show that this correlation is clearly valid for a wide range of thickness, namely, from tens of meters to more than 1000 m. A simple formula was derived that, for the sediments to be found in the area investigated, directly calculates the cover thickness from the frequency of the main peak in the H/V spectrum. A comparison with calculated resonant frequencies suggests the relation derived from the noise measurements depending on the velocity depth function of the shear wave. Classical spectral ratios are shown to be strongly influenced by the noise level and are therefore less reliable in determining the resonant frequency of the subsoil. The practical relevance of the investigation is illustrated by means of cross sections, constructed from results of the microtremor analyses, which provide a convincing image of the surficial structure of the areas investigated.


1997 ◽  
Vol 87 (2) ◽  
pp. 356-369
Author(s):  
Takumi Toshinawa ◽  
J. John Taber ◽  
John B. Berrill

Abstract The areal distribution of seismic ground-motion intensity in the city of Christchurch, New Zealand, during the 1994 Arthurs Pass Earthquake (ML 6.6) was evaluated using an intensity questionnaire together with local site amplifications inferred from seismic recordings and microtremors. In order to estimate the intensity in parts of the city where no intensity data were available, intensity data were compared to relative levels of shaking determined from both weak-motion and microtremor recordings. Weak ground-motion amplification factors were determined using ratios of ground accelerations at five sediment sites with respect to a rock site. Microtremor amplification factors were determined from horizontal-to-vertical spectral ratios at a 1-km spacing throughout the city. A positive correlation between weak-motion and microtremor amplification factors allowed extrapolation of microtremor amplification to estimated MM intensity (EMMI). EMMI ranged from 3 to 6 and was consistent with the questionnaire intensity and geological conditions and showed detailed information on the areal distribution of ground-motion intensity in the city.


2015 ◽  
Vol 15 (12) ◽  
pp. 2703-2713 ◽  
Author(s):  
C. Melchiorre ◽  
A. Tryggvason

Abstract. We refine and test an algorithm for landslide susceptibility assessment in areas with sensitive clays. The algorithm uses soil data and digital elevation models to identify areas which may be prone to landslides and has been applied in Sweden for several years. The algorithm is very computationally efficient and includes an intelligent filtering procedure for identifying and removing small-scale artifacts in the hazard maps produced. Where information on bedrock depth is available, this can be included in the analysis, as can information on several soil-type-based cross-sectional angle thresholds for slip. We evaluate how processing choices such as of filtering parameters, local cross-sectional angle thresholds, and inclusion of bedrock depth information affect model performance. The specific cross-sectional angle thresholds used were derived by analyzing the relationship between landslide scarps and the quick-clay susceptibility index (QCSI). We tested the algorithm in the Göta River valley. Several different verification measures were used to compare results with observed landslides and thereby identify the optimal algorithm parameters. Our results show that even though a relationship between the cross-sectional angle threshold and the QCSI could be established, no significant improvement of the overall modeling performance could be achieved by using these geographically specific, soil-based thresholds. Our results indicate that lowering the cross-sectional angle threshold from 1 : 10 (the general value used in Sweden) to 1 : 13 improves results slightly. We also show that an application of the automatic filtering procedure that removes areas initially classified as prone to landslides not only removes artifacts and makes the maps visually more appealing, but it also improves the model performance.


2021 ◽  
Vol 09 (09) ◽  
pp. 131-149
Author(s):  
Abdelnasser Mohamed ◽  
Sayed Omer El khateeb ◽  
Wael Dosoky ◽  
Mahmoud A. Abbas

Sign in / Sign up

Export Citation Format

Share Document