Effects of boundary conditions on the energy absorption of thin-walled polymer composite tubes under axial crushing

2008 ◽  
Vol 46 (7-9) ◽  
pp. 905-913 ◽  
Author(s):  
N.A. Warrior ◽  
T.A. Turner ◽  
E. Cooper ◽  
M Ribeaux
2013 ◽  
Vol 446-447 ◽  
pp. 109-112
Author(s):  
A. Othman ◽  
A.A. Arifin ◽  
S. Abdullah ◽  
A.K. Ariffin ◽  
N.A.N. Mohamed

The effect of specific absorbed energy on pultruded profile and thin-walled aluminum composite square cross-section tubes were studied via experimentally. The type of strand mat E-glass reinforced polyester resin was conducted in this study. The specimens of square pultruded and thin-walled wrapped strand mat E-glass composite were compressed under quasi-static of obliquely loadings from the top moving plat platen. For each specimen of composite tubes, triggering mechanism was applied on frontal end top of the tube to obtain the progressive failure throughout the crash event. The pultruded profile tube wall-thicknesses of 2.1 mm and thin-walled aluminum 1.9 mm thickness wrapped 3 layer woven fabric were examined, and the effects of crushing behaviors and failure modes were discussed. Results showed that the tubes energy absorption capability was affected significantly by different type of composite made in term of internal energy.


2015 ◽  
Vol 9 (1) ◽  
pp. 558-563 ◽  
Author(s):  
Hequan Wu ◽  
Libo Cao ◽  
Hongfeng Mao

As the world automotive crash safety regulations are different, it’s very important to design the energy absorbing structures that satisfy different collision boundary conditions. A large number of vehicle energy absorption beams dimensions were measured and then a common thin-walled rail was chosen. Considering the complexity of automobile collision boundary, finite element analysis and experimental design, interval uncertain algorithms, Kriging approximate model, NSGA - II genetic algorithm were combined to optimize the structure of the thin-walled rail with different impact velocity and different impact angle. Then the Pareto optimal solution was obtained. Thin walled beam after optimization has good energy absorption characteristics under different collision boundary conditions. Research results provide a method for the designing of a car that meets various crash regulations at the same time.


2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


Author(s):  
Degao Hou ◽  
Yan Chen ◽  
Jiayao Ma ◽  
Zhong You

Thin-walled tubes are widely used as energy absorption devices in automobiles, designed to protect the costly structures and people inside during an impact event through plastic deformation. They show excellent performance under axial loading in terms of weight efficiency, stroke distance and total energy absorption, but also have the disadvantage that the crushing force is not uniform during deformation process, especially with the existence of a high initial peak force. Recently, pattern design on tubular structures has received increasing attention. It has been found that, if the surface of a tube is pre-folded according to an origami pattern, the collapse mode of the tube can be altered, leading to changes in energy absorption performance. In this paper, we present a series of origami patterned tubes with a kite-shape pattern that is constructed by joining two pieces of Miura-ori. First of all, the geometry of the pattern is presented. We develop a theoretical model to predict the energy absorption associated with the axial crushing of the patterned tubes and derive a mathematical formula to calculate the mean crushing force accordingly. Secondly, a family of origami tubes with various profiles are designed, and their performances subjected to quasi-static axial crushing are numerically investigated. A parametric study is also conducted to establish the relationship between the pre-folded angle of the pattern and the initial peak force as well as the mean crushing force. Numerical results show that introducing patterns to thin-walled tubes offers three advantages in comparison with conventional tubes, i.e., a lower initial peak force, a more uniform crushing load, and a stable and repeatable collapse mode. A 36.0% increase in specific energy absorption and 67.2% reduction in initial peak force is achieved in the optimum case. The new origami patterned tubes show great promise as energy absorption devices.


Author(s):  
J.-E. Chambe ◽  
C. Bouvet ◽  
O. Dorival ◽  
S. Rivallant ◽  
J.-F. Ferrero

2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Omar Alhyari ◽  
Golam Newaz

Composite tubular structures have shown promise as energy absorbers in the automobile industry. This paper investigates the energy absorption characteristics of carbon fiber reinforced plastic (CFRP) tubes with pre-existing holes. Holes may represent an extreme case of impact damage that perforates the tube, e.g., stones from road surface impacting the tubes. Tubes with holes represent more conservative performance characteristics, since impact damage of the same size will have residual material, which may carry some load. Tubes with holes can provide the lower limit of CFRP tube performance under axial crushing relative to impact damaged tubes with perforation diameter close to the hole diameter. In this study, tubes with lay-up of [05/902/04] with one and two holes in defined locations and different diameters are experimentally studied under quasi-static loading. It was found that specific energy absorption (SEA) reduces by 50% with one or two holes of 15 mm size, 100 mm from top of the tube. The SEA reduction is about 60% lower than the regular tube when the diameter of the hole is 20 mm located at 100 mm from top. The most severe reduction occurs if the location of single or double holes are 75 mm from the top. In this case, a SEA reduction of 75% can be expected. Results indicate that holes can significantly alter the energy absorption capability of the tubes. It is also clear that in axial crushing of composite tubes, the location of the hole (100 to 75 mm) appears to create more pronounced effect than the size of the hole itself (15 vs. 20 mm) for the cases investigated. The failure modes for tubes with holes seem to preserve similar damage modes with delamination, frond creation, and brittle fracture, which is typically observed in regular composite tubes under axial crushing load. This is due to primarily front end crushing, which dominates the failure modes, while hole induced damage occurs later.


Sign in / Sign up

Export Citation Format

Share Document