Surrogate-based optimization of stiffened shells including load-carrying capacity and imperfection sensitivity

2013 ◽  
Vol 72 ◽  
pp. 164-174 ◽  
Author(s):  
Peng Hao ◽  
Bo Wang ◽  
Gang Li ◽  
Kuo Tian ◽  
Kaifan Du ◽  
...  
1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


2010 ◽  
Vol 102-104 ◽  
pp. 140-144
Author(s):  
Yi Ping Wang ◽  
Yong Zang ◽  
Di Ping Wu

The buckling behavior of thin-walled steel structures under load is still imperfectly understood, in spite of much research over the past 50 years. In this paper, the buckling behaviors of H-section columns under compression have been simulated with ANSYS. In the analysis, contact pairs between column ends and end blocks have been introduced into the model, and the load carrying capacity of the columns with four kinds of end constraint conditions and various typical initial geometric imperfections has been calculated and discussed. The results indicate that the load carrying capacity is most sensitive to the flexural imperfection, and the constraint condition cannot change the imperfection sensitivity of a column under compression, but improving restrain condition can heighten the load carrying capacity. They are helpful to the use and the tolerance control in the manufacture process of thin-walled H-section steel structures.


2019 ◽  
Vol 17 (04) ◽  
pp. 1850145 ◽  
Author(s):  
Hanshu Chen ◽  
Zeng Meng ◽  
Huanlin Zhou

In the practical engineering applications of stiffened shell, the initial imperfection is inevitable and it could cause significant reduction in the load-carrying capacity of stiffened shell. The light-weight optimization of stiffened shell is generally performed under the constraint of fixed maximum load-carrying capacity. However, the load-carrying capacity of stiffened shell has been improved continuously as the promotion of manufacturing technology, which causes the previous strategies of light-weight optimization become conservative and outdated. Therefore, an improved hybrid framework of multi-objective optimization of stiffened shell with imperfection is necessary and presented in this paper, which focus on developing a general posterior design method to determine the optimal weight according to the different collapse loads. A new adaptive update criterion based on the Kriging model is developed to improve the efficiency and accuracy of the hybrid framework. The present optimal results provide a set of the Pareto optimal points and form a Pareto front, from which new posterior design can be achieved.


2013 ◽  
Vol 845 ◽  
pp. 226-230 ◽  
Author(s):  
Mohd Shahrom Ismail ◽  
B.T. Hang Tuah bin Baharudin ◽  
Zalaida Talib ◽  
Shariza Azwin Yahya

This paper encompasses the work from numerical model by investigating the compression response of CFRP composite cylinder shells. The aim of this paper is to improve the reliability of NASA SP-8007 design guideline. The cylinder geometrical imperfections were tested through numerical modelling and validate with the experiment results. Good results comparison has been obtained through the work with small amount of errors. The cylinder shell load carrying capacity has been improved by average of 56% through imperfection study. This work builds confidence in the future use of non-linear finite element for the design of composite cylinder subjected to axial compression load.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document