scholarly journals Dynamic crushing and energy absorption of sandwich structures with combined geometry shell cores

2015 ◽  
Vol 91 ◽  
pp. 116-128 ◽  
Author(s):  
Alper Tasdemirci ◽  
Ali Kara ◽  
Kivanc Turan ◽  
Selim Sahin
2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2020 ◽  
Vol 27 ◽  
pp. 1928-1933
Author(s):  
J. Nagarjun ◽  
A. Praveen Kumar ◽  
K. Yamini Reddy ◽  
L. Ponraj Sankar

2017 ◽  
Vol 19 (5) ◽  
pp. 544-571 ◽  
Author(s):  
Xiaochao Jin ◽  
Tao Jin ◽  
Buyun Su ◽  
Zhihua Wang ◽  
Jianguo Ning ◽  
...  

Two kinds of innovative re-entrant and hexagonal cell honeycomb sandwich structures filled with reactive powder concrete were proposed, and the ballistic resistance and energy absorption of the sandwich structures were investigated by numerical simulations. The deformation and failure modes of the different structures were analyzed and evaluated in detail. The honeycomb sandwich structures filled with reactive powder concrete prisms improved the capacity of ballistic resistance and energy absorption significantly, compared to the normal reactive powder concrete plates and sandwich structures without reactive powder concrete prisms. The analysis shows that the auxetic re-entrant cell honeycomb sandwich structures have a better ballistic performance than the hexagonal cell honeycomb sandwich structures. The sandwich structures were subjected to impact by three kinds of projectiles: flat, hemispherical and conical nosed. The ballistic limit of the flat nosed projectile is the highest, while the impact performance of the conical and hemispherical nosed projectiles is obviously different from the flat nosed projectile, especially in a relative high velocity range. The sharper nose leads to a higher value of exit velocity and mass loss. In addition, effects of different design parameters on ballistic resistance were also studied by changing the thickness of honeycomb cell and face plates. Results indicate that the thickness of honeycomb walls and face plates have significant effect on the ballistic resistance and energy absorption in a relative low velocity range, while there are no big differences when the initial impact velocity exceeds 400 m/s.


Sign in / Sign up

Export Citation Format

Share Document