An improved model for predicting the shearing process of stainless steel thin-walled tubes in the closed fuel cycle

2020 ◽  
Vol 157 ◽  
pp. 107101
Author(s):  
Jianpeng Dong ◽  
Shilong Wang ◽  
Jie Zhou ◽  
Chi Ma ◽  
Sibao Wang ◽  
...  
2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


Atomic Energy ◽  
2021 ◽  
Author(s):  
N. V. Gorin ◽  
N. P. Voloshin ◽  
Yu. I. Churikov ◽  
A. N. Chebeskov ◽  
V. P. Kuchinov ◽  
...  

2013 ◽  
Vol 794 ◽  
pp. 507-513
Author(s):  
R.G. Rangasamy ◽  
Prabhat Kumar

Austenitic stainless steels are the major material of construction for the fast breeder reactors in view of their adequate high temperature mechanical properties, compatibility with liquid sodium coolant, good weldability, availability of design data and above all the fairly vast and satisfactory experience in the use of these steels for high temperature service. All the Nuclear Steam Supply System (NSSS) components of FBR are thin walled structure and require manufacture to very close tolerances under nuclear clean conditions. As a result of high temperature operation and thin wall construction, the acceptance criteria are stringent as compared to ASME Section III. The material of construction is Austenitic stainless steel 316 LN and 304 LN with controlled Chemistry and calls for additional tests and requirements as compared to ASTM standards. Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type, 500 MWe reactor which is at advanced stage of construction at Kalpakkam, Tamilnadu, India. In PFBR, the normal heat transport is mainly through two secondary loops and in their absence; the decay heat removal is through four passive and independent safety grade decay heat removal loops (SGDHR). The secondary sodium circuit and the SGHDR circuit consist of sodium tanks for various applications such as storage, transfer, pressure mitigation and to take care of volumetric expansion. The sodium tanks are thin walled cylindrical vertical vessels with predominantly torispherical dished heads at the top and bottom. These tanks are provided with pull-out nozzles which were successfully made by cold forming. Surface thermocouples and heaters, wire type leak detectors are provided on these tanks. These tanks are insulated with bonded mineral wool and with aluminum cladding. All the butt welds in pressure parts were subjected to 100% Radiographic examination. These tanks were subjected to hydrotest, pneumatic test and helium leak test under vacuum. The principal material of construction being stainless steel for the sodium tanks shall be handled with care following best engineering practices coupled with stringent QA requirements to avoid stress corrosion cracking in the highly brackish environment. Intergranular stress corrosion cracking and hot cracking are additional factors to be addressed for the welding of stainless steel components. Pickling and passivation, Testing with chemistry controlled demineralised water are salient steps in manufacturing. Corrosion protection and preservation during fabrication, erection and post erection is a mandatory stipulation in the QA programme. Enhanced reliability of welded components can be achieved mainly through quality control and quality assurance procedures in addition to design and metallurgy. The diverse and redundant inspections in terms of both operator and technique are required for components where zero failure is desired & claimed. This paper highlights the step by step quality management methodologies adopted during the manufacturing of high temperature thin walled austenitic stainless steel sodium tanks of PFBR.


1989 ◽  
Vol 22 (3) ◽  
pp. 180
Author(s):  
C.V. Dodd ◽  
D.W. Koerner ◽  
W.E. Deeds ◽  
C.A. Pickett

Author(s):  
T. A. Gupalo ◽  
V. V. Lopatin ◽  
N. F. Lobanov

A huge amount of radioactive waste has been accumulated in the Russian Federation (RF) in the course of implementation of the defense and energy programs, industrial and research activity involving the use of nuclear materials. The most justified and technically feasible technology of solidified RW isolation is its disposition in low-permeable geological formations in specially constructed underground facilities. Today in Russia a Closed Fuel Cycle (CFC) has been adopted, at the CFC final stage the spent nuclear materials and radioactive waste have to be isolated from the biosphere for the whole term of their potential hazard. In Russia, in accordance with the regional approach to the decision of Radioactive Waste (RW) disposal problem, several candidate disposal sites have been assigned.


Author(s):  
Sidik Permana ◽  
Mitsutoshi Suzuki

The embodied challenges for introducing closed fuel cycle are utilizing advanced fuel reprocessing and fabrication facilities as well as nuclear nonproliferation aspect. Optimization target of advanced reactor design should be maintained properly to obtain high performance of safety, fuel breeding and reducing some long-lived and high level radioactivity of spent fuel by closed fuel cycle options. In this paper, the contribution of loading trans-uranium to the core performance, fuel production, and reduction of minor actinide in high level waste (HLW) have been investigated during reactor operation of large fast breeder reactor (FBR). Excess reactivity can be reduced by loading some minor actinide in the core which affect to the increase of fuel breeding capability, however, some small reduction values of breeding capability are obtained when minor actinides are loaded in the blanket regions. As a total composition, MA compositions are reduced by increasing operation time. Relatively smaller reduction value was obtained at end of operation by blanket regions (9%) than core regions (15%). In addition, adopting closed cycle of MA obtains better intrinsic aspect of nuclear nonproliferation based on the increase of even mass plutonium in the isotopic plutonium composition.


2015 ◽  
Author(s):  
J. D. Vienna ◽  
E. D. Collins ◽  
J. V. Crum ◽  
W. L. Ebert ◽  
S. M. Frank ◽  
...  

Author(s):  
E.P. Velikhov ◽  
◽  
A.O. Gol’tsev ◽  
V.D. Davidenko ◽  
A.V. El’shin ◽  
...  

1995 ◽  
Vol 121 (1) ◽  
pp. 17-31 ◽  
Author(s):  
R. N. Hill ◽  
D. C. Wade ◽  
J. R. Liaw ◽  
E. K. Fujita

Sign in / Sign up

Export Citation Format

Share Document