Concentric compressive behavior of hybrid concrete–Stainless Steel Double-Skin Tubular Columns incorporating High Performance Concretes

2020 ◽  
pp. 107297
Author(s):  
Ahmed Hamoda ◽  
Fathi Abdelazeem ◽  
Mohamed Emara
2022 ◽  
pp. 136943322110651
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain [Formula: see text] curves, load-lateral deflection [Formula: see text] curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.


2016 ◽  
Vol 705 ◽  
pp. 323-331 ◽  
Author(s):  
Togay Ozbakkaloglu

This paper presents the results of 20 hollow and concrete-filled double-skin tubular columns (DSTCs), which were tested as part of a comprehensive experimental program that was undertaken at The University of Adelaide on FRP-concrete steel DSTCs. The paper is aimed at providing important insights into the influence of two key parameters, namely the diameter of inner steel tube and presence/absence of a concrete-filling inside the inner steel tube, which play major roles in the column behavior through their influences on a series of interacting mechanisms that govern the complex system behavior. A detailed examination of the results yielded a number of important insights into the mechanisms that influence the compressive behavior of DSTCs.


2014 ◽  
Vol 919-921 ◽  
pp. 83-87
Author(s):  
Butje Alfonsius Louk Fanggi ◽  
Togay Ozbakkaloglu

This paper reports on part of an ongoing experimental program at the University of Adelaide on FRP-concrete-steel double-skin tubular columns (DSTCs). The main emphasis of the study reported in this paper was to investigate the influence of loading pattern on the axial compressive behavior of DSTCs. To this end, 12 hollow and concrete-filled DSTCs were manufactured and tested under monotonic or cyclic axial compression. All of the specimens were manufactured using high-strength concrete (HSC). The results of the experimental study indicate that that concrete in cyclically loaded hollow DSTCs exhibits slightly larger strength and strain enhancement ratios than concrete in companion monotonically loaded DSTCs. The results also indicate that concrete in filled DSTCs exhibit slightly larger strength enhancement ratios than and similar strain enhancement ratios to concrete in monotonically loaded DSTCs.


2013 ◽  
Vol 838-841 ◽  
pp. 535-539 ◽  
Author(s):  
Butje Alfonsius Louk Fanggi ◽  
Togay Ozbakkaloglu

This paper reports on a part of an ongoing experimental program at the University of Adelaide on the behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular columns (DSTCs). Influence of concrete-filling inner steel tube on the compressive behavior of FRP-concrete-steel DSTCs was investigated experimentally through the test of 8 normal-and high-strength concrete DSTCs. The results of the experimental study indicate that concrete-filling inner steel tubes of DSTCs results in a slightly increase in the compressive strength and decrease in the ultimate strain of concrete in DSTCs, compared to companion DSTCs with hollow inner steel tubes. The results also indicate that concrete in both types of DSTCs is confined effectively by FRP and steel tubes.


Sign in / Sign up

Export Citation Format

Share Document