Deformation and energy absorption properties of cenosphere-aluminum syntactic foam-filled tubes under axial compression

2021 ◽  
Vol 160 ◽  
pp. 107364
Author(s):  
Li Wang ◽  
Boyi Zhang ◽  
Jian Zhang ◽  
Yuexin Jiang ◽  
Wei Wang ◽  
...  
2009 ◽  
Vol 89 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Siavash T. Taher ◽  
Rizal Zahari ◽  
Simin Ataollahi ◽  
Faizal Mustapha ◽  
ShahNor Basri

Author(s):  
Salamah Y. Maaita ◽  
Golam M. Newaz

This paper introduces a new technique to increase the specific energy absorption (SEA) for foam-filled circular aluminum tube significantly. The idea is to first utilize initiators to deform the foam inside an aluminum tube under the effects of constraints of the tube wall. Then the aluminum tube and foam are crushed together. In this study, the foam with 190mm length has been filled inside a 200mm aluminum tube and attached to two 50 mm length initiators (one initiator in each side of the tube). Initially, the foam-filled tube has been compressed a total of 90mm by entering and sliding the two initiators inside the aluminum tube. Then the foam, two initiators and the aluminum tube have been compressed together for another 30 mm (The total crushing distance is 120mm). The technique was utilized under quasi-static and dynamic axial compression loading conditions and is found to increase the specific energy absorption (SEA) for the foam-filled circular aluminum tube up to 30% more compared to pure aluminum tubes for quasi-static and dynamic axial compression loading conditions. Both experimental and analytical/computational results are presented.


2021 ◽  
Vol 11 (12) ◽  
pp. 5445
Author(s):  
Shengyong Gan ◽  
Xingbo Fang ◽  
Xiaohui Wei

The aim of this paper is to obtain the strut friction–touchdown performance relation for designing the parameters involving the strut friction of the landing gear in a light aircraft. The numerical model of the landing gear is validated by drop test of single half-axle landing gear, which is used to obtain the energy absorption properties of strut friction in the landing process. Parametric studies are conducted using the response surface method. Based on the design of the experiment results and response surface functions, the sensitivity analysis of the design variables is implemented. Furthermore, a multi-objective optimization is carried out for good touchdown performance. The results show that the proportion of energy absorption of friction load accounts for more than 35% of the total landing impact energy. The response surface model characterizes well for the landing response, with a minimum fitting accuracy of 99.52%. The most sensitive variables for the four landing responses are the lower bearing width and the wheel moment of inertia. Moreover, the max overloading of sprung mass in LC-1 decreases by 4.84% after design optimization, which illustrates that the method of analysis and optimization on the strut friction of landing gear is efficient for improving the aircraft touchdown performance.


2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


2021 ◽  
Vol 243 ◽  
pp. 112650
Author(s):  
Boyi Zhang ◽  
Jian Zhang ◽  
Li Wang ◽  
Yuexin Jiang ◽  
Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document