Shake table investigation of nonlinear soil–structure–fluid interaction of a thin-walled storage tank under earthquake load

2021 ◽  
Vol 167 ◽  
pp. 108143
Author(s):  
Diego Hernandez-Hernandez ◽  
Tam Larkin ◽  
Nawawi Chouw
2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Shengzhuo Lu ◽  
Wei Wang ◽  
Weidong Chen ◽  
Jingxin Ma ◽  
Yaqin Shi ◽  
...  

Large steel storage tanks designed with long-span structures, employed for storing oil and fuel, have been widely used in many countries over the past twenty years. Most of these tanks are thin-walled cylindrical shells. Owing to the high risk of gas explosions and the resulting deaths, injuries, and economic losses, more thorough damage analyses of these large structures should be conducted. This study examines the structural response of a simplified steel storage tank under a blast impact, as calculated by the LS-DYNA software package. The numerical results are then compared with a scale-model experiment. On that basis, the simplified storage tank prototype, which has a 15 × 104 m3 capacity, is analyzed using numerical simulation. In this study, we address issues around the variation in structural responses—particularly of the failure mode, resultant displacement, structural energy, and dynamic strain under the impact. In addition, we also discuss the effects of varying the internal liquid level, constraint conditions, and blast intensity.


2013 ◽  
Vol 284-287 ◽  
pp. 1421-1425
Author(s):  
Wei Ting Lin ◽  
Meng Hsiu Hsieh ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

Following the nuclear power plant accident in Fukushima Japan, seismic capacity evaluation has become a crucial issue in combination building safety. Condensate storage tanks are designed to supplies water to the condensate transfer pumps, the control rod drive hydraulic system pumps, and the condenser makeup. A separate connection to the condensate storage tank is used to supply water for the high pressure coolant injection system, reactor core isolation cooling system, and core spray system pumps. A condensate storage tank is defined as a seismic class I structure, playing the important role of providing flow to the operational system and the required static head for the suction of the condensate transfer pumps and the normal supply pump. According to the latest nuclear safety requirements, soil structure interaction must be considered in all seismic analyses. This study aims to rebuild the computer model of condensate storage tanks in Taiwan using the SAP 2000 program in conjunction with the lumped mass stick model and to evaluate the soil structure interaction by employing the SASSI 2000 program. The differences between the results with the soil structure interaction and spring model are compared via natural frequency and response spectrum curves. This computer model enables engineers to rapidly evaluate the safety margin of condensate storage tank following the occurrence of earthquakes or tsunamis.


2012 ◽  
Vol 8 (1) ◽  
pp. 130-135 ◽  
Author(s):  
Wei-Ting Lin ◽  
Yuan-Chieh Wu ◽  
Chin-Cheng Huang ◽  
An Cheng ◽  
Ta-Yuan Han

Author(s):  
Kaushik Das ◽  
Amitava Ghosh ◽  
Debashis Basu ◽  
Larry Miller

In recent years, the nuclear industry has proposed design of affordable small modular reactors (SMR), which will be installed below grade. A complex soil-structure-fluid interaction is expected to occur during a seismic event at such installation sites. A thorough understanding of this interaction is needed for the purpose of designing damping or isolation systems as well as to determine the adequacy and safety of these devices. A fully dynamically coupled analysis of the surrounding soil, reactor structure, and contained fluid within the reactor would provide the most accurate estimate of the forces acting on the SMR, but such an exercise is difficult to accomplish due to large discrepancies in length and time scales of each subsystem. It also would be computationally intensive to explicitly model all the detail physical features that affect system response in a single analysis framework. A sequential one-way explicit coupling between parts of the system, such as soil-structure or fluid-structure interaction in response to seismic ground motion, would provide some reasonable engineering information useful to designers and regulators. A two part study was conducted to understand the soil-structure and fluid-structure interaction in response to a seismic event for an SMR. The present paper describes the latter (fluid-structure interaction), where the containment fluid behavior during a seismic event is studied. A simplified two-dimensional computational fluid dynamics (CFD) model, representing a mockup structure based on the mPower reactor is developed in the study. It is used to simulate the sloshing motion of the fluid during a seismic event. A general volume of flow (VOF) approach is employed to simulate the sloshing motion and track the air-water interface. Ground acceleration calculated from a separate mechanical analysis is adopted in the study to specify the body forces experienced by the fluid. CFD simulations are performed for two different cases that correspond to two different input seismic waveforms. Simulated results highlight the movement of air-water interface due to sloshing within the containment building. The total horizontal and vertical forces on the structure, resulting from the sloshing motion were calculated. A Fourier analysis of the calculated fluid forces shows the dominant frequencies of the force, due to fluid sloshing, are different from that of the seismic acceleration. Similar dominant frequencies of the forces are predicted using two different input seismic waveforms. The magnitudes of the forces varied, depending on the magnitude of the seismic waveform input.


2003 ◽  
Author(s):  
Tomohiro Ito ◽  
Hideyuki Morita ◽  
Koji Hamada ◽  
Akihisa Sugiyama ◽  
Yoji Kawamoto ◽  
...  

When a thin walled cylindrical liquid storage tank suffers a large seismic base excitation, buckling phenomena may be caused such as bending buckling at the bottom portion and shear buckling at the middle portion of the tank. However, the dynamic behaviors of the tanks is not fully clarified, especially those from the occurrence of buckling to some failures. In this study, bending buckling phenomena were focused which will be categorized as diamond buckling and elephant foot bulge. As ones of a series of studies, dynamic buckling tests were performed using large scale liquid storage tank models simulating thin walled cylindrical liquid storage tanks in nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred, and the vibrational behavior before and after buckling was investigated. In addition to the large scaled model tests, fundamental tests using small scaled tank models were also performed in order to clarify the effects of dynamic liquid pressure on the buckling threshold and deformation patterns.


2020 ◽  
Vol 23 (14) ◽  
pp. 3024-3036
Author(s):  
Guoshan Xu ◽  
Yong Ding ◽  
Jingfeng Xu ◽  
Yongsheng Chen ◽  
Bin Wu

A novel shaking table substructure testing method that includes interaction forces determined by actuator forces and shaking table dynamic parameters is proposed and validated. The seismic performance of a storage tank that incorporates soil-structure interactions is investigated by the method proposed in this article. The experimental results show that the proposed shaking table substructure testing method is an efficient alternative method of evaluating the seismic performance of a storage tank that incorporates soil-structure interactions. The experimental results show that the influence of the soil-structure interactions increases as the stiffness of the foundation soil decreases, which was demonstrated by the results showing that the displacement and acceleration responses of the storage tank decrease as the stiffness of the foundation soil decreases. Moreover, the influence of the soil-structure interactions increases as the liquid height increases, which was illustrated by the decreased displacement responses of the storage tank with increases in the liquid height. The maximum acceleration response of the storage tank occurred at the liquid surface height.


Sign in / Sign up

Export Citation Format

Share Document