Does vegetation density and perceptions predict green stormwater infrastructure preference?

2020 ◽  
Vol 55 ◽  
pp. 126842
Author(s):  
Pongsakorn Suppakittpaisarn ◽  
Chun-Yen Chang ◽  
Brian Deal ◽  
Linda Larsen ◽  
William C. Sullivan
Author(s):  
Keisuke YOSHIDA ◽  
Shiro MAENO ◽  
Syuhei OGAWA ◽  
Sadayuki ISEKI ◽  
Ryosuke AKOH

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4286 ◽  
Author(s):  
Samiksha S. V. ◽  
P. Vethamony ◽  
Prasad K. Bhaskaran ◽  
P. Pednekar ◽  
M. Jishad ◽  
...  

Coastal regions of India are prone to sea level rise, cyclones, storm surges, and human-induced activities, resulting in flood, erosion, and inundation, and some of these impacts could be attributed to climate change. Mangroves play a very protective role against some of these coastal hazards. The primary aim of the study was to estimate wave energy attenuation by mangrove vegetation using modeling, and to validate the model results with measurements conducted off Mumbai coast, where a mangrove forest is present. Wave measurements were carried out from 5–8 August 2015 at three locations in a transect normal to the coast using surface-mounted pressure-level sensors in spring tide conditions. The measured data presented wave height attenuation of the order of 52%. Model set-up and sensitivity analyses were conducted to understand the model performance with respect to vegetation parameters. It was observed that wave attenuation increases with an increase in drag coefficient, vegetation density, and stem diameter. For a typical set-up in the Mumbai coastal region having a vegetation density of 0.175 per m2, stem diameter of 0.3 m, and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation ranging from 49% to 55%, which matches reasonably well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area. This study also highlights the importance of climate change and mangrove vegetation.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 255
Author(s):  
Gary Conley ◽  
Nicole Beck ◽  
Catherine Riihimaki ◽  
Krista McDonald ◽  
Michelle Tanner

Use of green stormwater infrastructure (GSI) to mitigate urban runoff impacts has grown substantially in recent decades, but municipalities often lack an integrated approach to prioritize areas for implementation, demonstrate compelling evidence of catchment-scale improvements, and communicate stormwater program effectiveness. We present a method for quantifying runoff reduction benefits associated with distributed GSI that is designed to align with the spatial scale of information required by urban stormwater implementation. The model was driven by a probabilistic representation of rainfall events to estimate annual runoff and reductions associated with distributed GSI for various design storm levels. Raster-based calculations provide estimates on a 30-m grid, preserving unique combinations of drainage factors that drive runoff production, hydrologic storage, and infiltration benefits of GSI. The model showed strong correspondence with aggregated continuous runoff data from a set of urbanized catchments in Salinas, California, USA, over a three-year monitoring period and output sensitivity to the storm drain network inputs. Because the model runs through a web browser and the parameterization is based on readily available spatial data, it is suitable for nonmodeling experts to rapidly update GSI features, compare alternative implementation scenarios, track progress toward urban runoff reduction goals, and demonstrate regulatory compliance.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0143733 ◽  
Author(s):  
Madeleine R. Sanders ◽  
Simon Clulow ◽  
Deborah S. Bower ◽  
John Clulow ◽  
Michael J. Mahony

1975 ◽  
Vol 6 (3) ◽  
pp. 170-188 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
S. E. JENSEN

A model for calculating the daily actual evapotranspiration based on the potential one is presented. The potential evapotranspiration is reduced according to vegetation density, water content in the root zone, and the rainfall distribution. The model is tested by comparing measured (EAm) and calculated (EAc) evapotranspirations from barley, fodder sugar beets, and grass over a four year period. The measured and calculated values agree within 10 %. The model also yields information on soil water content and runoff from the root zone.


2017 ◽  
Vol 9 (1) ◽  
pp. 105 ◽  
Author(s):  
Christopher Chini ◽  
James Canning ◽  
Kelsey Schreiber ◽  
Joshua Peschel ◽  
Ashlynn Stillwell

Sign in / Sign up

Export Citation Format

Share Document