1-MV Field-Emission Transmission Electron Microscope

2001 ◽  
Vol 7 (S2) ◽  
pp. 918-919
Author(s):  
Akira Tonomura

We developed a 1-MV field-emission transmission electron microscope to help in further improving electron holography, Lorentz microscopy, and high-resolution electron microscopy. This microscope is characterized by an electron beam having the highest brightness ever, 2×1010 A/cm2, and by the highest lattice-resolution below 0.5 Å. These two features were attained by minimizing the mechanical vibration of the whole column and by improving the stability of both the electron beam and the high voltage. If the tiny electron source located at the top of the 7-m-high microscope moves by as little as a fraction of the source size, 50 Å in diameter relative to the column, due to mechanical vibration or beam deflection by the AC magnetic fields, the beam brightness will be greatly degraded. If the ripples ΔE of the high-voltage E exceed ΔE/E = 5 × 10−7 /min, then the inherent monochromatic feature of the beam is deteriorated by the increase in energy spread.Through the preliminary experiments testing the vibration and magnetic shielding of the acceleration tube as well as the high stability of the high voltage, and through the numerical simulations on the vibration modes of the whole column, we were led to the conclusion that the microscope must be separated into three parts that are connected by cables.

2005 ◽  
Vol 480-481 ◽  
pp. 129-132 ◽  
Author(s):  
Masayuki Shimojo ◽  
Kazutaka Mitsuishi ◽  
M. Tanaka ◽  
M. Song ◽  
Kazuo Furuya

Nanometre-sized structures were fabricated by electron beam-induced deposition in a scanning transmission electron microscope. A small amount of metal-organic gases, W(CO)6 and dimethyl acetylacetonato gold, were introduced near a substrate in the chamber of the microscope. The gas was decomposed by the irradiation of focused electron beams and nanometre-sized deposits containing W or Au were produced. Moving the beam position enables us to produce structures with a variety of shapes. High-resolution electron microscopy observation revealed that the structures consisted of nano-crystalline and amorphous parts.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


2016 ◽  
Vol 171 ◽  
pp. 8-18 ◽  
Author(s):  
K. Bücker ◽  
M. Picher ◽  
O. Crégut ◽  
T. LaGrange ◽  
B.W. Reed ◽  
...  

2009 ◽  
Vol 24 (8) ◽  
pp. 2638-2643 ◽  
Author(s):  
Kai-Jheng Wang ◽  
Yan-Zuo Tsai ◽  
Jenq-Gong Duh ◽  
Toung-Yi Shih

An Sn-patch formed in Ni(V)-based under bump metallization during reflow and aging. To elucidate the evolution of the Sn-patch, the detailed compositions and microstructure in Sn–Ag–Cu and Ti/Ni(V)/Cu joints were analyzed by a field emission electron probe microanalyzer (EPMA) and transmission electron microscope (TEM), respectively. There existed a concentration redistribution in the Sn-patch, and its microstructure also varied with aging. The Sn-patch consisted of crystalline Ni and an amorphous Sn-rich phase after reflow, whereas V2Sn3 formed with amorphous an Sn-rich phase during aging. A possible formation mechanism of the Sn-patch was proposed.


Sign in / Sign up

Export Citation Format

Share Document