Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves

Ultrasonics ◽  
2015 ◽  
Vol 57 ◽  
pp. 104-124 ◽  
Author(s):  
Saeid Hedayatrasa ◽  
Kazem Abhary ◽  
Mohammad Uddin
2019 ◽  
Vol 254 ◽  
pp. 08001 ◽  
Author(s):  
Michal Šofer ◽  
Petr Ferfecki ◽  
Martin Fusek ◽  
Pavel Šofer ◽  
Renata Gnatowska

Lamb waves, as one of the types of guided waves, are extensively used for inspecting large structures as well as for structure health monitoring applications. One of the biggest benefits of guided waves is their ability to travel over long distances without much attenuation. Lamb waves are often used for inspection of piping systems and similar geometries where the dimension in the third direction is significantly smaller than the other two. No wonder that the study of the interaction of Lamb waves with particular types of geometric discontinuities is a frequent topic of research. The main aim of the proposed paper is to present the findings related to the numerical study of the interaction between low-order Lamb wave modes and surface breaking crack oriented at different angles relative to the free surface.


2019 ◽  
Vol 61 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Ali Rıza Yıldız ◽  
Ulaş Aytaç Kılıçarpa ◽  
Emre Demirci ◽  
Mesut Doğan

2018 ◽  
Vol 56 (9) ◽  
pp. 801-808
Author(s):  
K. Wada ◽  
H. Sakurai ◽  
K. Takimoto ◽  
S. Yamamoto

2021 ◽  
Vol 11 (8) ◽  
pp. 3538
Author(s):  
Mauricio Arredondo-Soto ◽  
Enrique Cuan-Urquizo ◽  
Alfonso Gómez-Espinosa

Cellular Materials and Topology Optimization use a structured distribution of material to achieve specific mechanical properties. The controlled distribution of material often leads to several advantages including the customization of the resulting mechanical properties; this can be achieved following these two approaches. In this work, a review of these two as approaches used with compliance purposes applied at flexure level is presented. The related literature is assessed with the aim of clarifying how they can be used in tailoring stiffness of flexure elements. Basic concepts needed to understand the fundamental process of each approach are presented. Further, tailoring stiffness is described as an evolutionary process used in compliance applications. Additionally, works that used these approaches to tailor stiffness of flexure elements are described and categorized. Finally, concluding remarks and recommendations to further extend the study of these two approaches in tailoring the stiffness of flexure elements are discussed.


Sign in / Sign up

Export Citation Format

Share Document