Effects of temperature and strain rate on the dynamic recrystallization of a medium-high-carbon high-silicon bainitic steel during hot deformation

Vacuum ◽  
2018 ◽  
Vol 148 ◽  
pp. 78-87 ◽  
Author(s):  
Ying Han ◽  
Shun Yan ◽  
Baoguo Yin ◽  
Huijun Li ◽  
Xu Ran
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 605
Author(s):  
Franco Lizzi ◽  
Kashyap Pradeep ◽  
Aleksandar Stanojevic ◽  
Silvana Sommadossi ◽  
Maria Cecilia Poletti

Inconel®718 is a well-known nickel-based super-alloy used for high-temperature applications after thermomechanical processes followed by heat treatments. This work describes the evolution of the microstructure and the stresses during hot deformation of a prototype alloy named IN718WP produced by powder metallurgy with similar chemical composition to the matrix of Inconel®718. Compression tests were performed by the thermomechanical simulator Gleeble®3800 in a temperature range from 900 to 1025 °C, and strain rates scaled from 0.001 to 10 s−1. Flow curves of IN718WP showed similar features to those of Inconel®718. The relative stress softening of the IN718WP was comparable to standard alloy Inconel®718 for the highest strain rates. Large stress softening at low strain rates may be related to two phenomena: the fast recrystallization rate, and the coarsening of micropores driven by diffusion. Dynamic recrystallization grade and grain size were quantified using metallography. The recrystallization grade increased as the strain rate decreased, although showed less dependency on the temperature. Dynamic recrystallization occurred after the formation of deformation bands at strain rates above 0.1 s−1 and after the formation of subgrains when deforming at low strain rates. Recrystallized grains had a large number of sigma 3 boundaries, and their percentage increased with strain rate and temperature. The calculated apparent activation energy and strain rate exponent value were similar to those found for Inconel®718 when deforming above the solvus temperature.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3623 ◽  
Author(s):  
Danying Zhou ◽  
Hua Gao ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

A self-designed Ti-35421 (Ti-3Al-5Mo-4Cr-2Zr-1Fe wt%) titanium alloy is a new type of low-cost high strength titanium alloy. In order to understand the hot deformation behavior of Ti-35421 alloy, isothermal compression tests were carried out under a deformation temperature range of 750–930 °C with a strain rate range of 0.01–10 s−1 in this study. Electron backscatter diffraction (EBSD) was used to characterize the microstructure prior to and post hot deformation. The results show that the stress–strain curves have obvious yielding behavior at a high strain rate (>0.1 s−1). As the deformation temperature increases and the strain rate decreases, the α phase content gradually decreases in the α + β phase region. Meanwhile, spheroidization and precipitation of α phase are prone to occur in the α + β phase region. From the EBSD analysis, the volume fraction of recrystallized grains was very low, so dynamic recovery (DRV) is the dominant deformation mechanism of Ti-35421 alloy. In addition to DRV, Ti-35421 alloy is more likely to occur in continuous dynamic recrystallization (CDRX) than discontinuous dynamic recrystallization (DDRX).


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qiang Fu ◽  
Wuhua Yuan ◽  
Wei Xiang

In the present work, the hot deformation behavior of TB18 titanium alloy was investigated by isothermal hot compression tests with temperatures from 650 to 880°C and strain rates from 0.001 to 10 s−1. The flow curves after friction and temperature correction show that the peak stress decreased with the temperature increase and the strain rate decrease. Three typical characteristics of flow behavior indicate the dynamic softening behavior during hot deformation. At a strain rate of 0.001∼0.01 s−1, the flow stress continues to decrease as the strain rate increases after the flow stress reaches the peak stress; the flow softening mechanism is dynamic recovery and dynamic recrystallization at a lower temperature and dynamic recrystallization at a higher temperature. The discontinuous yielding phenomenon could be seen at a strain rate of 1 s−1, dynamic recrystallization took place in the β single-phase zone, and flow localization bands were observed in the α + β two-phase zone. At a higher strain rate of 10 s−1, the flow instabilities were referred to as the occurrence of flow localization by adiabatic heat. Constitutive equation considering the compensation of strain was also established, and the results show high accuracy to predict the flow stress with the correlation coefficient of 99.2% and the AARE of 6.1%, respectively.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 934-939 ◽  
Author(s):  
DONG HE ◽  
JING CHUAN ZHU ◽  
YANG WANG ◽  
YONG LIU

The dynamic recrystallization (DRX) of TA 15 ( Ti -6 Al -2 Zr -1 Mo -1 V ) titanium alloy during the hot deformation process was studied by the Cellular Automata (CA) model which is base on the dislocation density theory. To build the CA model, the dislocation density model, dynamic recovery model, nucleation model and grain growth model were introduced and developed. The influences of strain rate on the microstructure evolution and flow stress character were investigated which shows that high strain rate leads to later DRX appearance, high flow stress peak value, small mean size of recrystallizing grains( R -grains) and low DRX percentage, but they have the similar Avrami curve. The characteristic of DRX process in a modeling non-uniform temperature filed (NTF) has been studied. All the simulation results show good agreement with the pioneer's work and experimental results.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ming-wei Guo ◽  
Zhen-hua Wang ◽  
Ze-an Zhou ◽  
Shu-hua Sun ◽  
Wan-tang Fu

316LN stainless steel with 0.08%N (08N) and 0.17%N (17N) was compressed at 1073–1473 K and 0.001–10 s−1. The hot deformation behavior was investigated using stress-strain curve analysis, processing maps, and so forth. The microstructure was analyzed through electron backscatter diffraction analysis. Under most conditions, the deformation resistance of 17N was higher than that of 08N. This difference became more pronounced at lower temperatures. The strain rate sensitivity increased with increasing temperature for types of steel. In addition, the higher the N content, the higher the strain rate sensitivity. Hot deformation activation energy increased from 487 kJ/mol to 549 kJ/mol as N concentration was increased from 0.08% to 0.17%. The critical strain for initiation of dynamic recrystallization was lowered with increasing N content. In the processing maps, both power dissipation ratio and unstable region increased with increasing N concentration. In terms of microstructure evolution, N promoted dynamic recrystallization kinetic and decreased dynamic recrystallization grain size. The grain growth rate was lower in 17N than in 08N during heat treatment. Finally, it was found that N favored twin boundary formation.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6371
Author(s):  
Dao-Guang He ◽  
Gang Su ◽  
Yong-Cheng Lin ◽  
Yu-Qiang Jiang ◽  
Zhou Li ◽  
...  

The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the previous stage or the strain rate at the previous/latter stage drops. Moreover, the annihilation/interaction of substructures is promoted, and the distinct refinement of the dynamic recrystallization (DRX) in the β grain can be found. However, the coarsening of the β grain and the consumption of dislocation substructures are accelerated at high temperatures. Furthermore, the principal DRX nucleation mechanism of the Ti-55511 alloy during double-stage compression with a stepped strain rate in the β region is discontinuous DRX. Additionally, by using the microstructural variation characteristics related to the forming parameters, a physical mechanism equation is modeled to forecast the forming features, the DRX fraction, and the size of the β grain in the investigated alloy. The forecasted results are in accordance with the tested results, indicating that the established model can accurately forecast the microstructure variation and flow features of the studied alloy.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2147
Author(s):  
Limin Zhu ◽  
Quanan Li ◽  
Qing Zhang ◽  
Xiaoya Chen

Dynamic precipitation of Mg–8.08Gd–2.41Sm–0.30Zr (wt %) alloy during hot compression was studied in the present work. The effects of temperature and strain rate on dynamic precipitation, and the effects of dynamic precipitation on dynamic recrystallization (DRX) and microhardness, were systematically analyzed. For this purpose, hot compression tests were conducted at the strain rates of 0.002~1 s−1 and temperatures of 350~500 °C, with the compaction strain of 70% (εmax = 0.7). The obtained results revealed that dynamic precipitation occurred during hot compression at 350~400 °C, but did not occur for T ≥ 450 °C. The precipitates were demonstrated to be β-Mg5Gd with a size of 200~400 nm, and they were distributed in the DRXed region. Dynamic precipitation occurred at strain rates in the 0.002~0.01 s−1 range, but did not occur when the strain rates were in the 0.1~1 s−1 range for the hot compression temperature of 350 °C. The relationships between the hot compression temperature (T) and DRXed grain size (lnd), microhardness (Hv), and DRXed grain size (d−1/2) of Mg–8.08Gd–2.41Sm–0.30Zr alloy were obtained.


Sign in / Sign up

Export Citation Format

Share Document