Effect of titanium addition on structure, corrosion resistance and mechanical properties of aluminum coatings on NdFeB by ion-beam-assisted magnetron sputtering

Vacuum ◽  
2020 ◽  
Vol 181 ◽  
pp. 109642
Author(s):  
Yicheng Lin ◽  
Qihang Zhu ◽  
Bizhang Zheng ◽  
Fangqin Hu ◽  
Lijing Yang ◽  
...  
2020 ◽  
Vol 96 (4) ◽  
pp. 39-46
Author(s):  
S.A. Vodennikov ◽  
◽  
V.O. Skachkov ◽  
O.S. Vodennikova ◽  
◽  
...  

A conceptually new technology for the application of aluminum coatings on 18G2C steel by the electrolytically deposited NaF-NaCl - AlF3 ionic melt method has been developed. To solve the tasks set in the work, a set of experimental and computational research methods was used: metallographic analysis, energy dispersion microanalysis, mechanical tests, and calculation of the oxidation rate of samples. The mechanical characteristics of the samples of reinforcing steel were determined on a rupture machine FP-100 at an active capture rate of 2.5 mm / min. The relationship between the rates of electrochemical oxidation of the aluminide coating, its mechanical properties, with the distribution of aluminum in the depth of the samples and its phase composition have been determined. The increase of mechanical characteristics of samples from 18G2S steel with an aluminum covering in comparison with usual reinforcing steel is shown. The sequence of structural-phase changes of metal in the process of aluminide coating is determined and its influence on mechanical and corrosion resistance is determined. Experimental evaluation of the rate of oxidation of 18G2C steel samples with aluminum coating under the conditions of sulfuric acid electrolyte at an electric current of 11 to 18 A has been conducted. The developed technology of electrolytic deposition of aluminum has scientific and practical interest for the construction industry. The developed coating makes it possible to increase the mechanical properties of steel by almost 12% and to increase the corrosion resistance. Keywords: aluminum coatings, 18G2C steel, electrochemical oxidation, electrolytic deposition.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1400 ◽  
Author(s):  
Jingjing Ding ◽  
Xixi Yin ◽  
Liping Fang ◽  
Xiandong Meng ◽  
Anyi Yin

Depleted uranium (DU) is oxidized readily due to its chemical activities, which limits its applications in nuclear industry. TiN film has been applied widely due to its good mechanical properties and its excellent corrosion resistance. In this work, TiN protection films were deposited on DU by direct current magnetron sputtering (DCMS) and high power pulsed magnetron sputtering (HPPMS), respectively. The surface morphology and microstructures were investigated by atomic force microscope (AFM), scanning electron microscopy (SEM), and grazing incidence X-ray diffraction (GIXRD). The hardness and Young’s modulus were determined by nano-Indenter. The wear behavior and adhesion was analyzed by pin-on-disc tests and scratch adhesion tests and the corrosion resistance was evaluated by electrochemical measurements. The results show that the TiN films that were deposited by HPPMS outperformed TiN film deposited by DCMS, with improvements on surface roughness, mechanical properties, wear behavior, adhesion strength, and corrosion resistance, thanks to its much denser columnar grain growth structure and preferred orientation of (111) plane with the lowest strain energy. Besides, the process of Ti interlayer deposition by HPPMS can enhance the film properties to an extent as compared to DCMS, which is attributed to the enhanced ion bombardment during the HPPMS.


2015 ◽  
Vol 62 (3) ◽  
pp. 149-155 ◽  
Author(s):  
Meiling Dong ◽  
Xiufang Cui ◽  
Guo Jin ◽  
Haidou Wang ◽  
Lina Zhu ◽  
...  

Purpose – The aim of the present paper is to investigate the mechanical performance of multi-layer films. With the wide application of optic and electronic thin-films, membrane materials and membrane technology have become one of the most active fields of research in contemporary materials science (Dumont et al., 1997). Multi-layer films have evolved as candidates for these applications because of their unique properties. TiN and Ti/TiN multi-layer films were fabricated using the DC magnetron sputtering method. A nano-indentation tester and electronic film distribution tester were utilized to evaluate the mechanical properties and residual stress of the films. The existence of interface effects on the mechanical properties and corrosion resistance of the films were analyzed. Design/methodology/approach – In this study, the Ti/TiN multi-layer films were fabricated using the DC magnetron sputtering method. The films were deposited on polished 45# steels. Ti was used as the sputtering target. Ar and N2 were applied as working and reactive gases, respectively. Surface morphology was measured using transmission electron microscopy. The composition was analyzed using D8 X-ray diffraction. Nano-indentation tests were performed using Nanoindenter G200 with a Berkovich indenter. A BGS 6341 electronic film stress distribution tester was used to measure the distribution of stress in the films. Findings – The film surface was very smooth and the structure was very dense. The elastic modulus and micro-hardness of Ti/TiN multi-layer films were smaller, compared to those of the TiN film. Furthermore, both of these parameters initially decreased and later increased, with a decrease in the modulation period. The residual stress in the film was compressive. The corrosion resistance properties of TiN films were the best in NaCl solution, less so in alkaline solution and worst in acid solution. For the Ti/TiN multi-layer films tested in an acid medium, the corrosion resistance performance was better when the modulation period was decreased to micron grade under exposure conditions at ambient temperature. Originality/value – In the present paper, the Ti/TiN multi-layer films were fabricated using PVD with different variations, and the influence on the performance of Ti/TiN multi-layer films due to each single layer period of TiN was studied. The findings should provide useful guidelines for the preparation of high quality Ti/TiN multi-layer thin films.


Author(s):  
Jun Liu ◽  
Katie E. Gunnison ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

The interfacial structure between the organic and inorganic phases in biological hard tissues plays an important role in controlling the growth and the mechanical properties of these materials. The objective of this work was to investigate these interfaces in nacre by transmission electron microscopy. The nacreous section of several different seashells -- abalone, pearl oyster, and nautilus -- were studied. Nacre is a laminated composite material consisting of CaCO3 platelets (constituting > 90 vol.% of the overall composite) separated by a thin organic matrix. Nacre is of interest to biomimetics because of its highly ordered structure and a good combination of mechanical properties. In this study, electron transparent thin sections were prepared by a low-temperature ion-beam milling procedure and by ultramicrotomy. To reveal structures in the organic layers as well as in the interfacial region, samples were further subjected to chemical fixation and labeling, or chemical etching. All experiments were performed with a Philips 430T TEM/STEM at 300 keV with a liquid Nitrogen sample holder.


Sign in / Sign up

Export Citation Format

Share Document