The mechanical and corrosion resistance properties of Ti/TiN multi-layer films produced by physical vapor deposition

2015 ◽  
Vol 62 (3) ◽  
pp. 149-155 ◽  
Author(s):  
Meiling Dong ◽  
Xiufang Cui ◽  
Guo Jin ◽  
Haidou Wang ◽  
Lina Zhu ◽  
...  

Purpose – The aim of the present paper is to investigate the mechanical performance of multi-layer films. With the wide application of optic and electronic thin-films, membrane materials and membrane technology have become one of the most active fields of research in contemporary materials science (Dumont et al., 1997). Multi-layer films have evolved as candidates for these applications because of their unique properties. TiN and Ti/TiN multi-layer films were fabricated using the DC magnetron sputtering method. A nano-indentation tester and electronic film distribution tester were utilized to evaluate the mechanical properties and residual stress of the films. The existence of interface effects on the mechanical properties and corrosion resistance of the films were analyzed. Design/methodology/approach – In this study, the Ti/TiN multi-layer films were fabricated using the DC magnetron sputtering method. The films were deposited on polished 45# steels. Ti was used as the sputtering target. Ar and N2 were applied as working and reactive gases, respectively. Surface morphology was measured using transmission electron microscopy. The composition was analyzed using D8 X-ray diffraction. Nano-indentation tests were performed using Nanoindenter G200 with a Berkovich indenter. A BGS 6341 electronic film stress distribution tester was used to measure the distribution of stress in the films. Findings – The film surface was very smooth and the structure was very dense. The elastic modulus and micro-hardness of Ti/TiN multi-layer films were smaller, compared to those of the TiN film. Furthermore, both of these parameters initially decreased and later increased, with a decrease in the modulation period. The residual stress in the film was compressive. The corrosion resistance properties of TiN films were the best in NaCl solution, less so in alkaline solution and worst in acid solution. For the Ti/TiN multi-layer films tested in an acid medium, the corrosion resistance performance was better when the modulation period was decreased to micron grade under exposure conditions at ambient temperature. Originality/value – In the present paper, the Ti/TiN multi-layer films were fabricated using PVD with different variations, and the influence on the performance of Ti/TiN multi-layer films due to each single layer period of TiN was studied. The findings should provide useful guidelines for the preparation of high quality Ti/TiN multi-layer thin films.

2019 ◽  
Vol 48 (6) ◽  
pp. 473-480 ◽  
Author(s):  
Umi Zalilah Mohamad Zaidi ◽  
A.R. Bushroa ◽  
Reza Rahbari Ghahnavyeh ◽  
Reza Mahmoodian

Purpose This paper aims to determine the crystallite size and microstrain values of AgSiN thin films using potential approach called approximation method. This method can be used as a replacement for other determination methods such as Williamson-Hall (W-H) plot and Warren-Averbach analysis. Design/methodology/approach The monolayer AgSiN thin films on Ti6Al4V alloy were fabricated using magnetron sputtering technique. To evaluate the crystallite size and microstrain values, the thin films were deposited under different bias voltage (−75, −150 and −200 V). X-ray diffraction (XRD) broadening profile along with approximation method were used to determine the crystallite size and microstrain values. The reliability of the method was proved by comparing it with scanning electron microscopy graph and W-H plot method. The second parameters’ microstrain obtained was used to project the residual stress present in the thin films. Further discussion on the thin films was done by relating the residual stress with the adhesion strength and the thickness of the films. Findings XRD-approximation method results revealed that the crystallite size values obtained from the method were in a good agreement when it is compared with Scherer formula and W-H method. Meanwhile, the calculations for thin films corresponding residual stresses were correlated well with scratch adhesion critical loads with the lowest residual stress was noted for sample with lowest microstrain and has thickest thickness among the three samples. Practical implications The fabricated thin films were intended to be used in antibacterial applications. Originality/value Up to the knowledge from literature review, there are no reports on depositing AgSiN on Ti6Al4V alloy via magnetron sputtering to elucidate the crystallite size and microstrain properties using the approximation method.


2013 ◽  
Vol 270 ◽  
pp. 150-156 ◽  
Author(s):  
A. Ruden ◽  
E. Restrepo-Parra ◽  
A.U. Paladines ◽  
F. Sequeda

Author(s):  
Hirotaka Tanabe ◽  
Yoshio Miyoshi ◽  
Tohru Takamatsu ◽  
Hitoshi Awano ◽  
Takaaki Yamano

The mechanical properties of TiN films deposited on carbon steel JIS S45C by reactive dc magnetron sputtering under three sputtering gas pressures, 0.5Pa, 0.8Pa, and 1.76Pa were investigated. The residual stress once increased and then decreased with increasing bias voltage at 0.5Pa and 0.8Pa, but increased monotonously at 1.76Pa. These variations could be explained by the variations of the bombarding energy of a sputtered ion at each gas pressure. The variations of hardness and toughness correlated with the variation of residual stress. The variation of adhesive strength also could be explained by the variation of the bombarding energy with a model proposed in this study. A specific wear rate was also investigated, and it was found that to increase not only the hardness but also the adhesive strength is necessary to improve the wear resistance of TiN films.


2020 ◽  
Vol 126 (2) ◽  
Author(s):  
Mohammad Noroozi ◽  
Andrejs Petruhins ◽  
Grzegorz Greczynski ◽  
Johanna Rosen ◽  
Per Eklund

2014 ◽  
Vol 17 (4) ◽  
pp. 65-73
Author(s):  
Thuong Tran Tuyet Vo ◽  
Tuan Anh Dao ◽  
Hang Thi Thu Cu ◽  
Hung Vu Tuan Le

Titanium nitride thin films (TiN) are fabricated by DC magnetron sputtering on different types of substrates such as glass substrates, PET substrates, substrate alloy (AISI 304) and drill steel. In this work we study the effect of distance target - substrate, sputtering time and negative voltage to the crystal structure, mechanical properties and optical films. The properties of thin films were studied by X-ray diffraction method Stylus, UV – Vis method and scanning electron microscopy. Results showed that the distance target - substrate, sputtering time and negative voltage affects the crystalline structure, mechanical properties and optical films. TiN films have been synthesized highly crystalline structure, crystal structure of thin films oriented along the the surface lattice (111), (200) and (311). Besides TiN thin films also have high reflectance in the visible and infrared range, good adhesion, high chemical durability.


2019 ◽  
Vol 11 (6) ◽  
pp. 819-831 ◽  
Author(s):  
Bassam Abdallah ◽  
M. Kakhia ◽  
W. Alsadat

Purpose TiN and TiAlVN films have been prepared by DC magnetron sputtering technique at room temperature. TiN target has been used to deposit TiN thin film under pure argon (100 percent Ar) gas. Additionally, Ti6Al4V alloy target has been used to deposit TiAlVN under nitrogen and argon gas (50 percent Ar and 50 percent N2). In this paper, two substrate types have been used: stainless steel 304 and Si(100). This analysis has confirmed that the nitride films, (TiN/Si) and TiAlVN in both cases, have been produced. Energy Depressive X-ray Spectroscopy (EDX) measurement confirmed that the TiN/Si was stoichiometry, where the N/Ti ratio was about 1 with low oxygen contamination. The results obtained have indicated that the TiAlVN has more resistance to corrosion than TiN film in 3.5 percent NaCl at 25°C (seawater). Both films, TiAlVN/SS304 and TiN/SS304, have shown improved corrosion resistance compared with virgin 304 substrate. Microhardness was carried out using Vickers method; the microhardness values for TiN/SS304 and TiAlVN/SS304 were approximately 7.5 GPa and 25.3 GPa, respectively. The paper aims to discuss these issues. Design/methodology/approach The films were prepared by a DC magnetron sputtering system starting from high pure (99.99 percent) Ti6Al4V target (Al 6wt%, V 4wt% and balance Ti) in plasma discharge argon/nitrogen (50 percent Ar and 50 percent N2) for deposition of TiAlVN film. Pure TiN target (99.99 percent) was used for preparation of TiN film in pure argon plasma. The diameter of target was 50 mm and the power applied for preparation of the two films was 100 W. A cylindrical high-vacuum chamber (Figure 2) made of stainless steel 316, with height 363 mm diameter, was fabricated locally. Scanning electron microscope images have been used to discover the films morphology. The composition of the films has been determined by EDX technique for films deposited on Si substrate. The electrochemical corrosion test was carried out using conventional three-electrode cell of 300 ml capacity by using Voltalab PGZ 301 system (France) using Tafel extrapolation method and electrochemical impedance spectroscopy techniques. Findings TiN and TiAlVN films have been prepared by DC magnetron sputtering technique without heating of the substrates holder. The effects of the composition of nitride films on mechanical and corrosion properties were investigated. The composition of the films has been determined by EDX technique. The effect of using titanium alloy (Ti with Al and V) on the composition and crystalline quality has been investigated. The microhardness is strongly dependent on the addition of the Al and V elements, and it consequently improves mechanical proprieties. The microhardness values for TiN/SS304 were approximately 7.5 GPa and 25.3 GPa for TiAlVN/SS304. They indicate that prepared films prevent the aggressive action of corrosion media. Originality/value TiN and TiAlVN films have been prepared by DC magnetron sputtering method at room temperature. Titanium nitride film, especially TiAlVN, is an effective method to improve the corrosion resistance of SS304. TiAlVN film has exhibited enhanced corrosion resistance and higher microhardness. Independent time-of-flight elastic recoil detection analysis has been used to determine the composition of the film.


Sign in / Sign up

Export Citation Format

Share Document