Microstructure Evolution and Property of Austenitic Stainless Steel after ECAP

2012 ◽  
Vol 268-270 ◽  
pp. 291-296
Author(s):  
Li Min Wang ◽  
Zhi Hua Gong ◽  
Gang Yang ◽  
Zheng Dong Liu ◽  
Han Sheng Bao

Ultrafine-grain or even nano-grain microstructure can be made by equal channel angular pressing (ECAP), mainly resulting from shear strain. The authors experimentally investigated 00Cr18Ni12 austenitic stainless steel and its mechanical properties during and after ECAP. The results showed that because of larger shear stress, many slipping bands occured inside grains, with the increase of pressing pass, the slipping bands may interact with each other to separate slipping bands into sub-grains, finally, the sub-grains transformed into new grains with large angular boundaries. The grain size was about 200nm after the 7th pass. After the 1st and 2nd pass, the tensile strength was higher 93% and 144% than that without ECAP, the yield strength was 5.3 and 6.6 times of that without ECAP respectively.

Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

The test of austenitic stainless steel specimens with strain control mode of pre-strain was carried out. The range of pre-strain is 4%, 5%, 6%, 7%, 8%, 9% and 10% on austenitic stainless steel specimens, then tensile testing of these samples was done and their mechanical properties after pre-strain were gotten. The results show that the pre-strain has little effect on tensile strength, and enhances the yield strength more obviously. According to the experimental data, we get a relational expression of S30408 between the value of yield strength and pre-strain. We can obtain several expressions about different kinds of austenitic stainless steel by this way. It is convenient for designers to get the yield strength of austenitic stainless steel after pre-strain by the value of pre-strain and the above expression.


2019 ◽  
Vol 944 ◽  
pp. 193-198
Author(s):  
Tian Yi Wang ◽  
Ren Bo Song ◽  
Heng Jun Cai ◽  
Jian Wen ◽  
Yang Su

The present study investigated the effect of cold rolling reduction on microstructure and mechanical properties of a 204C2 Cr–Mn austenitic stainless steel which contained 16%Cr, 2%Ni, 9%Mn and 0.083 %C). The 204C2 austenitic stainless steels were cold rolled at multifarious thickness reductions of 10%, 20%, 30%,40% and 50%, which were compared with the solution-treated one. Microstructure of them was investigated by means of optical microscopy, X-ray diffraction technique and scanning electron microscopy. For mechanical properties investigations, hardness and tensile tests were carried out. Results shows that the cold rolling reduction induced the martensitic transformation (γ→α ́) in the structure of the austenitic stainless steel. With the increase of the rolling reduction, the amount of strain-induced martensite increased gradually. Hardness, ultimate tensile strength and yield strength increased with the incremental rolling reduction in 204C2 stainless steels, while the elongation decreased. At the thickness reduction of 50%, the specimen obtained best strength and hardness. Hardness of 204C2 stain steel reached 679HV. Ultimate tensile strength reached 1721 MPa. Yield strength reached 1496 MPa.


2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


Author(s):  
Satyanarayana Kosaraju ◽  
Anil Kalluri ◽  
Swadesh Kumar Singh ◽  
Ahsan ul Haq

Abstract Austenitic Stainless-Steel grade 316L is one among the significant ASS grades which is most commonly used in various industry sectors. It has excellent corrosion resistance in ordinary atmospheric and also in more arduous environments such as salt water and environments where resistance to chloride corrosion is required. Whilst performing well when exposed to relatively high temperatures, this grade of Austenitic Stainless steel also maintains its strength and toughness at sub-zero temperatures, making this an excellent choice for various applications in industries sectors such as Marine, general construction, and water treatment. Therefore, present study focused on evaluating the mechanical properties such as ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of −25 °C from 0 °C to −50 °C and at three orientations (0, 45, 90) degrees to the rolling direction and cross head velocity (3, 5, 7) mm/min were chosen. A total of 27 experiments have been planned based on design of experiments to conduct experiments. A mathematical model for the prediction of ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) was developed using process parameters such as temperature, orientation and cross head velocities. Results have shown that mechanical properties can be predicted with a reasonable accuracy within the range of process parameters considered in this study.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 644
Author(s):  
Wenyan Zhang ◽  
Hua Zhang ◽  
Lifei Wang ◽  
Jianfeng Fan ◽  
Xia Li ◽  
...  

AZ31 magnesium alloy sheets were prepared by low-speed extrusion at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The microstructure evolution and mechanical properties of extruded AZ31 magnesium alloy sheets were studied. Results indicate that the low-speed extrusion obviously improved the microstructure of magnesium alloys. As the extrusion temperature decreased, the grain size for the produced AZ31 magnesium alloy sheets decreased, and the (0001) basal texture intensity of the extruded sheets increased. The yield strength and tensile strength of the extruded sheets greatly increased as the extrusion temperature decreased. The AZ31 magnesium alloy sheet prepared by low-speed extrusion at 350 °C exhibited the finest grain size and the best mechanical properties. The average grain size, yield strength, tensile strength, and elongation of the extruded sheet prepared by low-speed extrusion at 350 °C were ~2.7 μm, ~226 MPa, ~353 MPa, and ~16.7%, respectively. These properties indicate the excellent mechanical properties of the extruded sheets prepared by low-speed extrusion. The grain refinement effect and mechanical properties of the extruded sheets produced in this work were obviously superior to those of magnesium alloys prepared using traditional extrusion or rolling methods reported in other related studies.


2010 ◽  
Vol 667-669 ◽  
pp. 937-942 ◽  
Author(s):  
Z.J. Zheng ◽  
Yan Gao ◽  
Y. Gui ◽  
M. Zhu

The microstructure and mechanical properties of 304 stainless steel were investigated which was subjected to equal channel angular pressing (ECAP). Tensile strength, elongation, Vickers hardness of as-ECAPed and annealed ECAPed 304 stainless steel were systematically measured and compared and microstructure evolution during ECAP and ECAP+annealing was observed by OM and TEM. It was found that with the increasing of ECAP passes, the grain size of stainless steel was effectively refined to nanoscale, such as about 50 nm after 8 ECAP-passes. In addition, the dislocation density in ECAPed samplel increased greatly, consequently, the tensile strength and hardness of ECAPed 304 stainless steel increased and elongation decreased remarkably. After annealing at 600°C for 10 min,the ductility of ECAPed stainless steel was improved greatly while grains did not have obvious growth, and strength did not change much. The above results showed that the optimization of strength and ductility in ultra-fined 304 stainless steel can be achieved by appropriate ECAP plus annealing processes.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Ahmed Naif Al-Khazraji ◽  
Samir Ali Amin ◽  
Husam Ahmed Al-Warmizyari

Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properties. Tensile properties of stainless steel (AISI 321H) were decreased as temperature increases; the trend of properties decreasing for the samples of un-used tube material is the same for the ex-used material. The trend of stress-strain curve will not change due to elevated temperature exposure for long time of service, except the yield strength will be higher in this diagram. The yield strength increased under these conditions, but the ability of material  which is elongated will decrease. Hardness and absorbed energy increased by 11.28 and 14% respectively when the material is aged for long time under effect of high temperature accompanied with creep effect. Keywords:  Hardness, Impact, Mechanical Properties, Stainless Steel 321H, Mechanical Properties, Tensile Strength, Tube Furnace.


2008 ◽  
Vol 584-586 ◽  
pp. 960-965 ◽  
Author(s):  
Tamara Kravchenko ◽  
Alexander Korshunov ◽  
Natalia Zhdanova ◽  
Lev Polyakov ◽  
Irina Kaganova

Annealed oxygen-free and tough-pitch copper samples have been processed by equalchannel angular pressing (ECAP) by route BC. The samples included 8 x 8 mm section pieces and a 40 mm diameter bar. Thermal stability was assessed based on the changes in the standard mechanical properties (conventional yield strength, tensile strength, elongation, proportional elongation and contraction) after annealing at different temperatures for 1 hour. Thermal stability of the same grade of material has been found to be different for different batches and to depend on the structural conditions of deformed material. The zone of thermal stability for copper of the two grades of interest does not depend on the material’s chemical composition.


Sign in / Sign up

Export Citation Format

Share Document