Microstructure Evolution and Mechanical Properties of AISI 316H Austenitic Stainless Steel Processed by Warm Multi-Pass ECAP

2021 ◽  
Vol 122 (9) ◽  
pp. 931-938
Author(s):  
K. Hajizadeh ◽  
K. J. Kurzydlowski
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1557 ◽  
Author(s):  
Yi Xiong ◽  
Yun Yue ◽  
Tiantian He ◽  
Yan Lu ◽  
Fengzhang Ren ◽  
...  

The impacts of rolling temperature on phase transformations and mechanical properties were investigated for AISI 316LN austenitic stainless steel subjected to rolling at cryogenic and room temperatures. The microstructure evolution and the mechanical properties were investigated by means of optical, scanning, and transmission electron microscopy, an X-ray diffractometer, microhardness tester, and tensile testing system. Results showed that strain-induced martensitic transformation occurred at both deformation temperatures, and the martensite volume fraction increased with the deformation. Compared with room temperature rolling, cryorolling substantially enhanced the martensite transformation rate. At 50% deformation, it yielded the same fraction as the room temperature counterpart at 90% strain, while at 70%, it totally transformed the austenite to martensite. The strength and hardness of the stainless steel increased remarkably with the deformation, but the corresponding elongation decreased dramatically. Meanwhile, the tensile fracture morphology changed from a typical ductile rupture to a mixture of ductile and quasi-cleavage fracture. The phase transformation and deformation mechanisms differed at two temperatures, with the martensite deformation contributing to the former, and austenite deformation to the latter. Orientations between the transformed martensite and its parent phase followed the K–S (Kurdjumov–Sachs) relationship.


2012 ◽  
Vol 268-270 ◽  
pp. 291-296
Author(s):  
Li Min Wang ◽  
Zhi Hua Gong ◽  
Gang Yang ◽  
Zheng Dong Liu ◽  
Han Sheng Bao

Ultrafine-grain or even nano-grain microstructure can be made by equal channel angular pressing (ECAP), mainly resulting from shear strain. The authors experimentally investigated 00Cr18Ni12 austenitic stainless steel and its mechanical properties during and after ECAP. The results showed that because of larger shear stress, many slipping bands occured inside grains, with the increase of pressing pass, the slipping bands may interact with each other to separate slipping bands into sub-grains, finally, the sub-grains transformed into new grains with large angular boundaries. The grain size was about 200nm after the 7th pass. After the 1st and 2nd pass, the tensile strength was higher 93% and 144% than that without ECAP, the yield strength was 5.3 and 6.6 times of that without ECAP respectively.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract ALZ 305 is an austenitic stainless steel with excellent formability and good corrosion resistance, toughness, and mechanical properties. The higher amount of nickel in this grade enables high deep-drawing deformation without intermediate annealing. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-762. Producer or source: ALZ nv.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Sign in / Sign up

Export Citation Format

Share Document