WITHDRAWN: Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing

2016 ◽  
Vol 196 ◽  
pp. 55 ◽  
Author(s):  
Geon Goo Han ◽  
Jun-Yeong Lee ◽  
Gwi-Deuk Jin ◽  
Jongbin Park ◽  
Yo Han Choi ◽  
...  
2017 ◽  
Vol 101 (14) ◽  
pp. 5903-5911 ◽  
Author(s):  
Geon Goo Han ◽  
Jun-Yeong Lee ◽  
Gwi-Deuk Jin ◽  
Jongbin Park ◽  
Yo Han Choi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lin Kang ◽  
Pengtao Li ◽  
Danyang Wang ◽  
Taihao Wang ◽  
Dong Hao ◽  
...  

Abstract16S rRNA sequencing of human fecal samples has been tremendously successful in identifying microbiome changes associated with both aging and disease. A number of studies have described microbial alterations corresponding to physical frailty and nursing home residence among aging individuals. A gut-muscle axis through which the microbiome influences skeletal muscle growth/function has been hypothesized. However, the microbiome has yet to be examined in sarcopenia. Here, we collected fecal samples of 60 healthy controls (CON) and 27 sarcopenic (Case)/possibly sarcopenic (preCase) individuals and analyzed the intestinal microbiota using 16S rRNA sequencing. We observed an overall reduction in microbial diversity in Case and preCase samples. The genera Lachnospira, Fusicantenibacter, Roseburia, Eubacterium, and Lachnoclostridium—known butyrate producers—were significantly less abundant in Case and preCase subjects while Lactobacillus was more abundant. Functional pathways underrepresented in Case subjects included numerous transporters and phenylalanine, tyrosine, and tryptophan biosynthesis suggesting that protein processing and nutrient transport may be impaired. In contrast, lipopolysaccharide biosynthesis was overrepresented in Case and PreCase subjects suggesting that sarcopenia is associated with a pro-inflammatory metagenome. These analyses demonstrate structural and functional alterations in the intestinal microbiota that may contribute to loss of skeletal muscle mass and function in sarcopenia.


2018 ◽  
Vol 9 (4) ◽  
pp. 2320-2327 ◽  
Author(s):  
Zhaoxia Wang ◽  
Shuaiming Jiang ◽  
Chenchen Ma ◽  
Dongxue Huo ◽  
Qiannan Peng ◽  
...  

A high-throughput 16S rRNA sequencing technology was applied to study changes of the intestinal microbiota in mice after the administration of cow and goat milk. We show a correlation between the gut microbiota and the nutrients in milk.


Author(s):  
Xuan Sun ◽  
Hong-Fei Zhang ◽  
Chao-Lin Ma ◽  
Hua Wei ◽  
Bao-Ming Li ◽  
...  

Background. Intestinal microorganisms play an important role in regulating the neurodevelopment and the brain functions of the host through the gut-brain axis. Lactobacillus, one of the most representative intestinal probiotics, produces important effects on human physiological functions. Our previous studies reveal that the Lactobacillus plantarum WLPL04 has a series of beneficial actions, such as antiadhesion of pathogens, protection from the harmful effect of sodium dodecyl sulfate, and anti-inflammatory stress on Caco2 cells. However, its effects on brain functions remain unknown. The present study aims to evaluate the potential effect of L. plantarum WLPL04 on anxiety/depressive-like behaviors in chronically restrained mice. Methods. Newly weaned mice were exposed to chronic restraint stress for four weeks and raised daily with or without L. plantarum WLPL04 water supplement. Animals were behaviorally assessed for anxiety/depression and cognitive functions. The 16S rRNA sequencing was performed to analyze the intestinal microbiota structure. The levels of the medial prefrontal cortical (mPFC) brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) and serum 5-hydroxytryptamine (5-HT) were examined using Western blot and enzyme-linked immunosorbent assay. Results. The chronic stress-induced anxiety/depressive-like behaviors and cognitive deficits were significantly alleviated by the L. plantarum WLPL04 treatment. The 16S rRNA sequencing analysis showed that the chronic stress reduced the diversity and the richness of intestinal microbiota, which were rescued by the L. plantarum WLPL04 treatment. The levels of BDNF and TrkB in the mPFC and the concentration of 5-HT in the serum remained unchanged in chronically restrained mice treated with the L. plantarum WLPL04. Conclusions. The L. plantarum WLPL04 can rescue anxiety/depressive-like behaviors and cognitive dysfunctions, reverse the abnormal change in intestinal microbiota, and alleviate the reduced levels of 5-HT, BDNF, and TrkB induced by chronic stress in mice, providing an experimental basis for the therapeutic application of L. plantarum on anxiety/depression.


2012 ◽  
Vol 2 (2) ◽  
pp. 111
Author(s):  
Sung-Hee Oh ◽  
Min-Chul Cho ◽  
Jae-Wook Kim ◽  
Dongheui An ◽  
Mun-Hui Jeong ◽  
...  

Author(s):  
Isabel Abellan-Schneyder ◽  
Andrea Janina Bayer ◽  
Sandra Reitmeier ◽  
Klaus Neuhaus

Author(s):  
Andrea Janina Bayer ◽  
Sandra Reitmeier ◽  
Klaus Neuhaus ◽  
Isabel Abellan-Schneyder

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Haleh Forouhandeh ◽  
Sepideh Zununi Vahed ◽  
Hossein Ahangari ◽  
Vahideh Tarhriz ◽  
Mohammad Saeid Hejazi

Abstract Lighvan cheese (Lighvan panir) is among the most famous traditional cheese in Iran for its desired aroma and flavor. Undoubtedly, the lactic acid bacteria especially the genus Lactobacillus are the critical factors in developing the aroma, flavor, and texture in Lighvan cheese. In this study, the Lactobacillus population of the main Lighvan cheese was investigated. The Lactobacillus of the main Lighvan cheese was isolated using specific culture methods according to previously published Guidelines. Then, the phylogenetic features were investigated and the phenotypic characteristics were examined using specific culture methods. Twenty-eight Gram-positive bacterial species were identified belonged to the genus Lactobacillus. According to the same sequences as each other, three groups (A, B, and C) of isolates were categorized with a high degree of similarity to L. fermentum (100%) and L. casei group (L. casei, L. paracasei, and L. rhamnosus) (99.0 to 100%). Random amplified polymorphic DNA (RAPD) fingerprint analysis manifested the presence of three clusters that were dominant in traditional Lighvan cheese. Cluster І was divided into 4 sub-clusters. By the result of carbohydrate fermentation pattern and 16S rRNA sequencing, isolates were identified as L. rhamnosus. The isolates in clusters II and III represented L. paracasei and L. fermentum, respectively as they were identified by 16S rRNA sequencing and fermented carbohydrate patterns. Our result indicated that the specific aroma and flavor of traditional Lighvan cheese can be related to its Lactobacillus population including L. fermentum, L. casei, L. paracasei, and L. rhamnosus. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document