Newcastle Disease Virus V protein interacts with hnRNP H1 to promote viral replication

2021 ◽  
pp. 109093
Author(s):  
Lina Tong ◽  
Zhili Chu ◽  
Xiaolong Gao ◽  
Mengqing Yang ◽  
Fathalrhman Eisa A. Adam ◽  
...  
Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 489 ◽  
Author(s):  
Zhili Chu ◽  
Jiangang Ma ◽  
Caiying Wang ◽  
Kejia Lu ◽  
Xiaoqin Li ◽  
...  

Newcastle disease virus (NDV) can infect a wide range of domestic and wild bird species. The non-structural V protein of NDV plays an important role in antagonizing innate host defenses to facilitate viral replication. However, there is a lack of knowledge related to the mechanisms through which the V protein regulates viral replication. The extracellular signal-regulated kinase (ERK) signaling pathway in the host is involved in a variety of functions and is activated by several stimuli, including viral replication. In this study, we show that both the lentogenic strain, La Sota, and the velogenic strain, F48E9, of NDV activate the mitogen-activated protein kinase (MEK)/ERK signaling pathway. The pharmacological inhibition of ERK1/2 phosphorylation using the highly selective inhibitors U0126 and SCH772984 resulted in the reduced levels of NDV RNA in cells and virus titers in the cell supernatant, which established an important role for the MEK/ERK signaling pathway in NDV replication. Moreover, the overexpression of the V protein in HeLa cells increased the phosphorylation of ERK1/2 and induced the transcriptional changes in the genes downstream of the MEK/ERK signaling pathway. Taken together, our results demonstrate that the V protein is involved in the ERK signaling pathway-mediated promotion of NDV replication and thus, can be investigated as a potential antiviral target.


2021 ◽  
Author(s):  
Tingyu Peng ◽  
Xusheng Qiu ◽  
Lei Tan ◽  
Shengqing Yu ◽  
Binghuan Yang ◽  
...  

The Newcastle disease virus (NDV) matrix (M) protein is the pivotal element for viral assembly, budding and proliferation. It traffics through the cellular nucleus but performs its primary function in the cytoplasm. To investigate the biological importance of M’s nuclear–cytoplasmic trafficking and the mechanism involved, the regulatory motif nuclear export signal (NES) and nuclear localization signal (NLS) were deeply analyzed. Here, two types of combined NLS and NES signals were identified within NDV-M. The Herts/33-type M was found to mediate efficient nuclear export and stable virus-like particle (VLP) release, while the LaSota-type M was mostly retained in the nuclei and showed retarded VLP production. Two critical residues, 247 and 263, within the motif were identified and associated with nuclear export efficiency. We identified, for the first time, residue 247 as an important monoubiquitination site, the modification of which regulates the nuclear–cytoplasmic trafficking of NDV-M. Subsequently, mutant LaSota strains were rescued via reverse genetics, which contained either single or double amino acid substitutions that were similar to the M of Herts/33. The rescued rLaSota strains rLaSota-R247K, -S263R, and -DM (double mutation) showed about twofold higher HA titers and 10-fold higher EID 50 titers than wild-type (wt) rLaSota. Further, the MDT and ICPI values of those recombinant viruses were slightly higher than that of wt rLaSota probably due to their higher proliferation rates. Our findings contribute to a better understanding of the molecular mechanism of the replication and pathogenicity of NDV, and even those of all other paramyxoviruses. It is beneficial for the development of vaccines and therapies for paramyxoviruses. Importance Newcastle disease virus (NDV) is a pathogen that is lethal to birds and causes heavy losses in the poultry industry worldwide. The World Organization for Animal Health (OIE) ranked ND as the third most significant poultry disease and the eighth most important wildlife disease in the World Livestock Disease Atlas in 2011. The matrix (M) protein of NDV is very important for viral assembly and maturation. It is interesting that M proteins enter the cellular nucleus before performing their primary function in the cytoplasm. We found that NDV-M has a combined nuclear import and export signal. The ubiquitin modification of a lysine residue within this signal is critical for quick, efficient nuclear export and subsequent viral production. Our findings shed new light on viral replication and opens up new possibilities for therapeutics against NDV and other paramyxoviruses; furthermore, we demonstrate a novel approach to improving paramyxovirus vaccines.


2010 ◽  
Vol 84 (8) ◽  
pp. 3835-3844 ◽  
Author(s):  
Subbiah Elankumaran ◽  
Vrushali Chavan ◽  
Dan Qiao ◽  
Raghunath Shobana ◽  
Gopakumar Moorkanat ◽  
...  

ABSTRACT Newcastle disease virus (NDV), an avian paramyxovirus, is tumor selective and intrinsically oncolytic because of its potent ability to induce apoptosis. Several studies have demonstrated that NDV is selectively cytotoxic to tumor cells but not normal cells due to defects in the interferon (IFN) antiviral responses of tumor cells. Many naturally occurring strains of NDV have an intact IFN-antagonistic function and can still replicate in normal human cells. To avoid potential toxicity issues with NDV, especially in cancer patients with immunosuppression, safe NDV-oncolytic vectors are needed. We compared the cell killing abilities of (i) a recombinant NDV (rNDV) strain, Beaudette C, containing an IFN-antagonistic, wild-type V protein (rBC), (ii) an isogenic recombinant virus with a mutant V protein (rBC-Edit virus) that induces increased IFN in infected cells and whose replication is restricted in normal human cells, and (iii) a recombinant LaSota virus with a virulent F protein cleavage site that is as interferon sensitive as rBC-Edit virus (LaSota V.F. virus). Our results indicated that the tumor-selective replication of rNDV is determined by the differential regulation of IFN-α and downstream antiviral genes induced by IFN-α, especially through the IRF-7 pathway. In a nude mouse model of human fibrosarcoma, we show that the IFN-sensitive NDV variants are as effective as IFN-resistant rBC virus in clearing the tumor burden. In addition, mice treated with rNDV exhibited no signs of toxicity to the viruses. These findings indicate that augmentation of innate immune responses by NDV results in selective oncolysis and offer a novel and safe virotherapy platform.


2003 ◽  
Vol 77 (17) ◽  
pp. 9522-9532 ◽  
Author(s):  
Man-Seong Park ◽  
Adolfo García-Sastre ◽  
Jerome F. Cros ◽  
Christopher F. Basler ◽  
Peter Palese

ABSTRACT It has been demonstrated that the V protein of Newcastle disease virus (NDV) functions as an alpha/beta interferon (IFN-α/β) antagonist (M. S. Park, M. L. Shaw, J. Muñoz-Jordan, J. F. Cros, T. Nakaya, N. Bouvier, P. Palese, A. García-Sastre, and C. F. Basler, J. Virol. 77:1501-1511, 2003). We now show that the NDV V protein plays an important role in host range restriction. In order to study V functions in vivo, recombinant NDV (rNDV) mutants, defective in the expression of the V protein, were generated. These rNDV mutants grow poorly in both embryonated chicken eggs and chicken embryo fibroblasts (CEFs) compared to the wild-type (wt) rNDV. However, insertion of the NS1 gene of influenza virus A/PR8/34 into the NDV V(−) genome [rNDV V(−)/NS1] restores impaired growth to wt levels in embryonated chicken eggs and CEFs. These data indicate that for viruses infecting avian cells, the NDV V protein and the influenza NS1 protein are functionally interchangeable, even though there are no sequence similarities between the two proteins. Interestingly, in human cells, the titer of wt rNDV is 10 times lower than that of rNDV V(−)/NS1. Correspondingly, the level of IFN secreted by human cells infected with wt rNDV is much higher than that secreted by cells infected with the NS1-expressing rNDV. This suggests that the IFN antagonist activity of the NDV V protein is species specific. Finally, the NDV V protein plays an important role in preventing apoptosis in a species-specific manner. The rNDV defective in V induces apoptotic cell death more rapidly in CEFs than does wt rNDV. Taken together, these data suggest that the host range of NDV is limited by the ability of its V protein to efficiently prevent innate host defenses, such as the IFN response and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document