scholarly journals Antibody elicited against the gp41 N-heptad repeat (NHR) coiled-coil can neutralize HIV-1 with modest potency but non-neutralizing antibodies also bind to NHR mimetics

Virology ◽  
2008 ◽  
Vol 377 (1) ◽  
pp. 170-183 ◽  
Author(s):  
Josh D. Nelson ◽  
Heather Kinkead ◽  
Florence M. Brunel ◽  
Dan Leaman ◽  
Richard Jensen ◽  
...  
2014 ◽  
Vol 70 (a1) ◽  
pp. C1809-C1809
Author(s):  
Mi Li ◽  
Elena Gustchina ◽  
Alla Gustchina ◽  
Marius Clore ◽  
Alexander Wlodawer

A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.


2020 ◽  
Author(s):  
Sonu Kumar ◽  
Xiaohe Lin ◽  
Timothy Ngo ◽  
Benjamin Shapero ◽  
Cindy Sou ◽  
...  

ABSTRACTAntigen-specific B-cell sorting and next-generation sequencing (NGS) were combined to isolate HIV-1 neutralizing antibodies (NAbs) from mice and rabbits immunized with BG505 trimers and nanoparticles. Three mouse NAbs potently neutralize BG505.T332N and recognize a glycan epitope centered at the C3/V4 region, as revealed by electron microscopy (EM), x-ray crystallography, and epitope mapping. Three potent NAbs were sorted from rabbit B cells that target glycan holes on the BG505 envelope glycoprotein (Env) and account for a significant portion of autologous NAb response. We then determined a 3.4Å-resolution crystal structure for the clade C transmitted/founder Du172.17 Env with a redesigned heptad repeat 1 (HR1) bend. This clade C Env, as a soluble trimer and attached to a ferritin nanoparticle, along with a clade A Q482-d12 Env trimer, elicited distinct NAb responses in rabbits. Our study demonstrates that nanoparticles presenting gp41-stabilized trimers can induce potent NAb responses in mice and rabbits with Env-dependent breadth.TEASERMouse and rabbit NAbs elicited by gp41-stabilized trimers and nanoparticles neutralize autologous HIV-1 by targeting different epitopes


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1210
Author(s):  
Christophe Caillat ◽  
Delphine Guilligay ◽  
Guidenn Sulbaran ◽  
Winfried Weissenhorn

HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.


2019 ◽  
Vol 116 (45) ◽  
pp. 22556-22566 ◽  
Author(s):  
Yi Wang ◽  
Pavanjeet Kaur ◽  
Zhen-Yu J. Sun ◽  
Mostafa A. Elbahnasawy ◽  
Zahra Hayati ◽  
...  

The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.


2000 ◽  
Vol 74 (12) ◽  
pp. 5716-5725 ◽  
Author(s):  
Xinzhen Yang ◽  
Michael Farzan ◽  
Richard Wyatt ◽  
Joseph Sodroski

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins function as a membrane-anchored trimer of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Previously, we reported three approaches to stabilize soluble trimers containing parts of the gp41 ectodomains: addition of GCN4 trimeric helices, disruption of the cleavage site between gp120 and gp41, and introduction of cysteines in the gp41 coiled coil to form intersubunit disulfide bonds. Here, we applied similar approaches to stabilize soluble gp140 trimers including the complete gp120 and gp41 ectodomains. A combination of fusion with the GCN4 trimeric sequences and disruption of the gp120-gp41 cleavage site resulted in relatively homogeneous gp140 trimers with exceptional stability. The gp120 epitopes recognized by neutralizing antibodies are intact and exposed on these gp140 trimers. By contrast, the nonneutralizing antibody epitopes on the gp120 subunits of the soluble trimers are relatively occluded compared with those on monomeric gp120 preparations. This antigenic similarity to the functional HIV-1 envelope glycoproteins and the presence of the complete gp41 ectodomain should make the soluble gp140 trimers useful tools for structural and immunologic studies.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 566
Author(s):  
Mario Cano-Muñoz ◽  
Samuele Cesaro ◽  
Bertrand Morel ◽  
Julie Lucas ◽  
Christiane Moog ◽  
...  

A promising strategy to neutralize HIV-1 is to target the gp41 spike subunit to block membrane fusion with the cell. We previously designed a series of single-chain proteins (named covNHR) that mimic the trimeric coiled-coil structure of the gp41 N-terminal heptad repeat (NHR) region and potently inhibit HIV-1 cell infection by avidly binding the complementary C-terminal heptad repeat (CHR) region. These proteins constitute excellent tools to understand the structural and thermodynamic features of this therapeutically important interaction. Gp41, as with many coiled-coil proteins, contains in core positions of the NHR trimer several highly conserved, buried polar residues, the role of which in gp41 structure and function is unclear. Here we produced three covNHR mutants by substituting each triad of polar residues for the canonical isoleucine. The mutants preserve their helical structure and show an extremely increased thermal stability. However, increased hydrophobicity enhances their self-association. Calorimetric analyses show a marked influence of mutations on the binding thermodynamics of CHR-derived peptides. The mutations do not affect however the in vitro HIV-1 inhibitory activity of the proteins. The results support a role of buried core polar residues in maintaining structural uniqueness and promoting an energetic coupling between conformational stability and NHR–CHR binding.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 241
Author(s):  
Jeremy I. Roop ◽  
Noah A. Cassidy ◽  
Adam S. Dingens ◽  
Jesse D. Bloom ◽  
Julie Overbaugh

Although Rhesus macaques are an important animal model for HIV-1 vaccine development research, most transmitted HIV-1 strains replicate poorly in macaque cells. A major genetic determinant of this species-specific restriction is a non-synonymous mutation in macaque CD4 that results in reduced HIV-1 Envelope (Env)-mediated viral entry compared to human CD4. Recent research efforts employing either laboratory evolution or structure-guided design strategies have uncovered several mutations in Env’s gp120 subunit that enhance binding of macaque CD4 by transmitted/founder HIV-1 viruses. In order to identify additional Env mutations that promote infection of macaque cells, we utilized deep mutational scanning to screen thousands of Env point mutants for those that enhance HIV-1 entry via macaque receptors. We identified many uncharacterized amino acid mutations in the N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) regions of gp41 that increased entry into cells bearing macaque receptors up to 9-fold. Many of these mutations also modestly increased infection of cells bearing human CD4 and CCR5 (up to 1.5-fold). NHR/CHR mutations identified by deep mutational scanning that enhanced entry also increased sensitivity to neutralizing antibodies targeting the MPER epitope, and to inactivation by cold-incubation, suggesting that they promote sampling of an intermediate trimer conformation between closed and receptor bound states. Identification of this set of mutations can inform future macaque model studies, and also further our understanding of the relationship between Env structure and function.


2007 ◽  
Vol 12 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Géry Dams ◽  
Koen Van Acker ◽  
Emmanuel Gustin ◽  
Inge Vereycken ◽  
Lieve Bunkens ◽  
...  

Fusion of host cell and human immunodeficiency virus type 1 (HIV-1) membranes is mediated by the 2 “heptad-repeat” regions of the viral gp41 protein. The collapse of the C-terminal heptad-repeat regions into the hydrophobic grooves of a coiled-coil formed by the corresponding homotrimeric N-terminal heptad-repeat regions generates a stable 6-helix bundle. This brings viral and cell membranes together for membrane fusion, facilitating viral entry. The authors developed an assay based on soluble peptides derived from the gp41 N-terminal heptad-repeat region (IQN36) as well as from the C-terminal region (C34). Both peptides were labeled with fluorophores, IQN36 with allophycocyanin (APC) and C34 with the lanthanide europium (Eu3+). Formation of the 6-helix bundle brings both fluorophores in close proximity needed for Förster resonance energy transfer (FRET). Compounds that interfere with binding of C34-Eu with IQN36-APC suppress the FRET signal. The assay was validated with various peptides and small molecules, and quenching issues were addressed. Evaluation of a diversified compound collection in a high-throughput screening campaign enabled identification of small molecules with different chemical scaffolds that inhibit this crucial intermediate in the HIV-1 entry process. This study's observations substantiate the expediency of time-resolved FRET-based assays to identify small-molecule inhibitors of protein-protein interactions. ( Journal of Biomolecular Screening 2007:865-874)


2015 ◽  
Vol 89 (13) ◽  
pp. 6960-6964 ◽  
Author(s):  
Qian Wang ◽  
Wenwen Bi ◽  
Xiaojie Zhu ◽  
Haoyang Li ◽  
Qianqian Qi ◽  
...  

A key barrier against developing preventive and therapeutic human immunodeficiency virus (HIV) vaccines is the inability of viral envelope glycoproteins to elicit broad and potent neutralizing antibodies. However, in the presence of fusion inhibitor enfuvirtide, we show that the nonneutralizing antibodies induced by the HIV type 1 (HIV-1) gp41 N-terminal heptad repeat (NHR) domain (N63) exhibit potent and broad neutralizing activity against laboratory-adapted HIV-1 strains, including the drug-resistant variants, and primary HIV-1 isolates with different subtypes, suggesting the potential of developing gp41-targeted HIV therapeutic vaccines.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Luis R. Castillo-Menendez ◽  
Hanh T. Nguyen ◽  
Joseph Sodroski

ABSTRACTBinding to the receptor CD4 triggers entry-related conformational changes in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, (gp120/gp41)3. Soluble versions of HIV-1 Env trimers (sgp140 SOSIP.664) stabilized by a gp120-gp41 disulfide bond and a change (I559P) in gp41 have been structurally characterized. Here, we use cross-linking/mass spectrometry to evaluate the conformations of functional membrane Env and sgp140 SOSIP.664. Differences were detected in the gp120 trimer association domain and C terminus and in the gp41 heptad repeat 1 (HR1) region. Whereas the membrane Env trimer exposes the gp41 HR1 coiled coil only after CD4 binding, the sgp140 SOSIP.664 HR1 coiled coil was accessible to the gp41 HR2 peptide even in the absence of CD4. Our results delineate differences in both gp120 and gp41 subunits between functional membrane Env and the sgp140 SOSIP.664 trimer and provide distance constraints that can assist validation of candidate structural models of the native HIV-1 Env trimer.IMPORTANCEHIV-1 envelope glycoprotein spikes mediate the entry of the virus into host cells and are a major target for vaccine-induced antibodies. Soluble forms of the envelope glycoproteins that are stable and easily produced have been characterized extensively and are being considered as vaccines. Here, we present evidence that these stabilized soluble envelope glycoproteins differ in multiple respects from the natural HIV-1 envelope glycoproteins. By pinpointing these differences, our results can guide the improvement of envelope glycoprotein preparations to achieve greater similarity to the viral envelope glycoprotein spike, potentially increasing their effectiveness as a vaccine.


Sign in / Sign up

Export Citation Format

Share Document