scholarly journals The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA

Virology ◽  
2014 ◽  
Vol 449 ◽  
pp. 297-303 ◽  
Author(s):  
Sunil Kumar Tewary ◽  
Haiyan Zhao ◽  
Xuefeng Deng ◽  
Jianming Qiu ◽  
Liang Tang
2013 ◽  
Vol 87 (23) ◽  
pp. 12766-12775 ◽  
Author(s):  
Yong Luo ◽  
Steve Kleiboeker ◽  
Xuefeng Deng ◽  
Jianming Qiu

Human parvovirus B19 (B19V) infection has a unique tropism to human erythroid progenitor cells (EPCs) in human bone marrow and the fetal liver. It has been reported that both B19V infection and expression of the large nonstructural protein NS1 arrested EPCs at a cell cycle status with a 4 N DNA content, which was previously claimed to be “G2/M arrest.” However, a B19V mutant infectious DNA (M20mTAD2) replicated well in B19V-semipermissive UT7/Epo-S1 cells but did not induce G2/M arrest (S. Lou, Y. Luo, F. Cheng, Q. Huang, W. Shen, S. Kleiboeker, J. F. Tisdale, Z. Liu, and J. Qiu, J. Virol.86:10748–10758, 2012). To further characterize cell cycle arrest during B19V infection of EPCs, we analyzed the cell cycle change using 5-bromo-2′-deoxyuridine (BrdU) pulse-labeling and DAPI (4′,6-diamidino-2-phenylindole) staining, which precisely establishes the cell cycle pattern based on both cellular DNA replication and nuclear DNA content. We found that although both B19V NS1 transduction and infection immediately arrested cells at a status of 4 N DNA content, B19V-infected 4 N cells still incorporated BrdU, indicating active DNA synthesis. Notably, the BrdU incorporation was caused neither by viral DNA replication nor by cellular DNA repair that could be initiated by B19V infection-induced cellular DNA damage. Moreover, several S phase regulators were abundantly expressed and colocalized within the B19V replication centers. More importantly, replication of the B19V wild-type infectious DNA, as well as the M20mTAD2mutant, arrested cells at S phase. Taken together, our results confirmed that B19V infection triggers late S phase arrest, which presumably provides cellular S phase factors for viral DNA replication.


2021 ◽  
Author(s):  
Nancy Horton ◽  
Jonathan L Sanchez ◽  
Niloofar Ghadirian

Two new structures of the N-terminal domain of the main replication protein, NS1, of Human Parvovirus B19 (B19V) are presented. This domain (NS1-nuc) plays an important role in the “rolling hairpin” replication of the single-stranded B19V DNA genome, recognizing origin of replication sequences in double-stranded DNA, and cleaving (i.e. nicking) single-stranded DNA at a nearby site known as the trs. One structure of NS1-nuc is solved to 2.4 Å and shows the positions of two bound phosphate ions. A second structure shows the position of a single divalent cation in the DNA nicking active site. The three-dimensional structure of NS1-nuc is well conserved between the two forms, as well as with a previously solved structure of a sequence variant of the same domain, however shown here at significantly higher resolution. Using structures of NS1-nuc homologues bound to single- and double-stranded DNA, models for DNA recognition and nicking by B19V NS1-nuc are presented which predict residues important for DNA cleavage and for sequence specific recognition at the viral origin of replication.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Peng Xu ◽  
Aaron Yun Chen ◽  
Safder S. Ganaie ◽  
Fang Cheng ◽  
Weiran Shen ◽  
...  

ABSTRACTLytic infection of human parvovirus B19 (B19V) takes place exclusively in human erythroid progenitor cells of bone marrow and fetal liver, which disrupts erythropoiesis. During infection, B19V expresses three nonstructural proteins (NS1, 11-kDa, and 7.5-kDa) and two structural proteins (VP1 and VP2). While NS1 is essential for B19V DNA replication, 11-kDa enhances viral DNA replication significantly. In this study, we confirmed the enhancement role of 11-kDa in viral DNA replication and elucidated the underlying mechanism. We found that 11-kDa specially interacts with cellular growth factor receptor-bound protein 2 (Grb2) during virus infection andin vitro. We determined a high affinity interaction between 11-kDa and Grb2 that has an equilibrium dissociation constant (KD) value of 18.13 nM.In vitro, one proline-rich motif was sufficient for 11-kDa to sustain a strong interaction with Grb2. In consistence,in vivoduring infection, one proline-rich motif was enough for 11-kDa to significantly reduce phosphorylation of extracellular signal-regulated kinase (ERK). Mutations of all three proline-rich motifs of 11-kDa abolished its capability to reduce ERK activity and, accordingly, decreased viral DNA replication. Transduction of a lentiviral vector encoding a short hairpin RNA (shRNA) targetingGrb2decreased the expression of Grb2 as well as the level of ERK phosphorylation, which resulted in an increase of B19V replication. These results, in concert, indicate that the B19V 11-kDa protein interacts with cellular Grb2 to downregulate ERK activity, which upregulates viral DNA replication.IMPORTANCEHuman parvovirus B19 (B19V) infection causes hematological disorders and is the leading cause of nonimmunological fetal hydrops during pregnancy. During infection, B19V expresses two structural proteins, VP1 and VP2, and three nonstructural proteins, NS1, 11-kDa, and 7.5-kDa. While NS1 is essential, 11-kDa plays an enhancing role in viral DNA replication. Here, we elucidated a mechanism underlying 11-kDa protein-regulated B19V DNA replication. 11-kDa is tightly associated with cellular growth factor receptor-bound protein 2 (Grb2) during infection.In vitro, 11-kDa interacts with Grb2 with high affinity through three proline-rich motifs, of which at least one is indispensable for the regulation of viral DNA replication. 11-kDa and Grb2 interaction disrupts extracellular signal-regulated kinase (ERK) signaling, which mediates upregulation of B19V replication. Thus, our study reveals a novel mechanism of how a parvoviral small nonstructural protein regulates viral DNA replication by interacting with a host protein that is predominately expressed in the cytoplasm.


1997 ◽  
Vol 78 (1) ◽  
pp. 215-219 ◽  
Author(s):  
M Leruez-Ville ◽  
U Hazan ◽  
I Vassias ◽  
C Pallier ◽  
F Morinet ◽  
...  

2011 ◽  
Vol 140 (3) ◽  
pp. 454-461 ◽  
Author(s):  
M. S. PEDRANTI ◽  
P. BARBERO ◽  
C. WOLFF ◽  
L. M. GHIETTO ◽  
M. ZAPATA ◽  
...  

SUMMARYThe contribution of parvovirus B19 (B19V) as a causative agent of febrile exanthema (FE) in Cordoba, Argentina, was analysed by detection of viral DNA, and specific IgM and IgG. Serum from 141 patients with FE who were negative for measles and rubella, collected during 2005–2009, plus serum from 31 healthy individuals, were assayed. B19V was the aetiological agent in 14·9% of all FE cases, and in 39·1% in an epidemic year (2007). B19V DNA was detected in 47·6% of IgM-positive FE patients, 30·2% of IgM-negative/IgG-positive FE patients, and 9·7% of healthy controls, indicating B19V long-term infection in ~10% of immunocompetent individuals. Persistent B19V DNA was significantly more frequent in children than adults and in males than females. All patients with acute B19V infection had rash and fever, 85·7% had adenopathy, and only 14·3% had arthropathy. This is the first follow-up study of markers of infection and immunity for B19V infection in Argentina.


Sign in / Sign up

Export Citation Format

Share Document