Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials

2017 ◽  
Vol 115 ◽  
pp. 266-277 ◽  
Author(s):  
Zhiqiang Zhao ◽  
Yang Li ◽  
Xie Quan ◽  
Yaobin Zhang
2016 ◽  
Vol 220 ◽  
pp. 516-522 ◽  
Author(s):  
Yan Dang ◽  
Dawn E. Holmes ◽  
Zhiqiang Zhao ◽  
Trevor L. Woodard ◽  
Yaobin Zhang ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. 59 ◽  
Author(s):  
Judith González ◽  
Marta Sánchez ◽  
Xiomar Gómez

Anaerobic digestion is a well-known technology which has been extensively studied to improve its performance and yield biogas from substrates. The application of different types of pre-treatments has led to an increase in biogas production but also in global energy demand. However, in recent years the use of carbon conductive materials as supplement for this process has been studied resulting in an interesting way for improving the performance of anaerobic digestion without greatly affecting its energy demand. This review offers an introduction to this interesting approach and covers the different experiences performed on the use of carbon conductive materials proposing it as a feasible alternative for the production of energy from biomass, considering also the integration of anaerobic digestion and thermal valorisation.


2021 ◽  
Vol 47 (1) ◽  
pp. 174-180
Author(s):  
Henrique Sousa do Nascimento ◽  
Geísa Vieira Vasconcelos Magalhães ◽  
José Demontier Vieira de Souza-Filho ◽  
Ronaldo Stefanutti ◽  
Ari Clecius Alves de Lima ◽  
...  

This study evaluated the use of two anaerobic bioreactors in the production of biogas from malt bagasse waste. Bioreactor B1 was loaded with a mixture of 600mL of anaerobic sludge, 300g of organic waste, taken from an upflow anaerobic sludge blanket (UASB) reactor, and 300g of malt bagasse residue. Bioreactor B2 was loaded with a mixture of 600g of organic waste and 600mL of anaerobic sludge taken from an UASB reactor. The anaerobic digestion processes lasted for 10 weeks and the produced methane fraction was measured in 5 occasions. Bioreactor B1 presented low methane production (7.2%) but Bioreactor B2 showed a much more signif- icant percentage, reaching up to 48.3%. The experiments were capable of reproducing largescale operational conditions, enabling increased results in biogas capturing and processing, strengthening sustainability and energy efficiency. The experiment also showed the importance of studying different types of organic waste, seeking optimization of anaerobic digestion pro- cesses.


2021 ◽  
Vol 6 (3) ◽  
pp. 135-144
Author(s):  
Yelizaveta Chernysh ◽  
◽  
Vladimir Shtepa ◽  
Igor Roy ◽  
Viktoriia Chubur ◽  
...  

This article is devoted to the analysis and prospects of using different types of organic waste to achieve environmental goals. Due to the unique climate and natural resources, Ukraine has significant potential for biomass, the processing of which should solve urgent problems with the disposal of waste, as well as the production of alternative energy sources and biofertilizers. The preferred substrates for anaerobic digestion in Ukraine, considering the technological feasibility, availability, and volume are animal manure (cattle, pigs), bird droppings, plant residues, industrial sludge, common sludges. After analyzing the statistics for 2015-2019, the groups of dominant wastes were identified, and with the help of the built-in function "TREND," the forecast of the waste potential with an organic component for 2021-2026 was constructed. Examining the obtained indicators for different types of waste, the reasons for the tendency of decrease or increase in their formation in the next five years were revealed. The direction of enhancing the sustainability of bioenergy, achieving environmental goals through the bioprocessing of organic waste associated with the ecological safety of production processes were discussed.


Author(s):  
Ana Momčilović ◽  
Gordana Stefanović ◽  
Predrag Rajković ◽  
Biljana Milutinović ◽  
Dragiša Savić

Organic waste represents a challenging type of waste for implementation in the flows of a circular economy.  The main idea of the paper is the assessment of the inclusion possibility of different types of organic waste generated in one area into the flows of the circular economy. For this purpose, a mathematical model was developed and applied. Based on the mathematical model, the optimum mixing ratio of the several organic waste fractions, which will be subjected to the anaerobic digestion treatment and composting, is determined. Developed scenarios are based on the organic waste types and quantities available in the considered area. In each of the scenarios, process products, in the form of biogas and compost, are introduced into the flows of the circular economy. Based on the inputs and outputs in developed scenarios, the efficiency of the circular economy for each scenario is determined.


2004 ◽  
Vol 49 (10) ◽  
pp. 163-169 ◽  
Author(s):  
J. la Cour Jansen ◽  
C. Gruvberger ◽  
N. Hanner ◽  
H. Aspegren ◽  
 Svärd

Anaerobic digestion of sludge has been part of the treatment plant in Malmö for many years and several projects on optimisation of the digestion process have been undertaken in full scale as well as in pilot scale. In order to facilitate a more sustainable solution in the future for waste management, solid waste organic waste is sorted out from households for anaerobic treatment in a newly built city district. The system for treatment of the waste is integrated in a centralised solution located at the existing wastewater treatment plant. A new extension of the digester capacity enables separate as well as co-digestion of sludge together with urban organic waste from households, industry, restaurants, big kitchens, food stores, supermarkets, green markets etc. for biogas production and production of fertiliser. Collection and pre-treatment of different types of waste are in progress together with examination of biogas potential for different types of organic waste. Collection of household waste as well as anaerobic digestion in laboratory and pilot scale has been performed during the last year. It is demonstrated that organic household waste can be digested separately or in combination with sludge. In the latter case a higher biogas yield is found than should be expected from digestion of the two materials separately. Household waste from a system based on collection of organic waste from grinders could be digested at mesophilic conditions whereas digestion failed at thermophilic conditions.


2012 ◽  
Vol 48 (1) ◽  
pp. 23-27
Author(s):  
TOMONAO MIYASHIRO ◽  
QINGHONG WANG ◽  
YINGNAN YANG ◽  
KAZUYA SHIMIZU ◽  
NORIO SUGIURA ◽  
...  

2020 ◽  
Vol 67 (1) ◽  
pp. 148-155
Author(s):  
Anatoliy V. Fedotov ◽  
Viktor S. Grigoriev ◽  
Dmitriy A. Kovalev ◽  
Andrey A. Kovalev

To speed up the wastewater treatment under aerobic conditions and to optimize the processes of anaerobic wastewater treatment in digesters, immobilization technologies of microorganisms and enzymes on solid carriers are used. Ceramic carriers based on aluminosilicates and alumina are one of the promising inorganic biomass carriers. (Research purpose) To study the structure of porous ceramic biomass carriers for anaerobic processing of organic waste and evaluate the prospects for their use. (Materials and methods) The substrate for anaerobic digestion was a mixture of sediments of the primary and secondary sewage sumps of the Lyubertsy treatment facilities. K-65 cattle feed was used to ensure the constancy of the composition of organic substances in substrates as a cosubstrate. The authors used the method of low-temperature nitrogen adsorption of Bruner-Emmett-Teller to study the pore structure and specific surface of solid carriers on a specific surface analyzer Quntachrome Autosorb-1. (Results and discussion) The main characteristics (specific surface, volume of micro- and mesopores, predominant pore radius, water absorption and others) of chamotte foam lightweight and highly porous corundum ceramics were determined. It was revealed that ceramic materials with a developed surface and electrically conductive material provided an increase in biogas yield by 3.8-3.9 percent with an increase in methane content by an average of 5 percent. (Conclusions) The results of anaerobic digestion showed a positive effect of both a conductive carrier and highly porous ceramic materials on the process of anaerobic bioconversion of organic waste into biogas. It is advisable to expand experimental studies on the use of a conductive carrier with a developed surface based on highly porous ceramics.


Chemosphere ◽  
2021 ◽  
pp. 130449
Author(s):  
Yiwei Liu ◽  
Xiang Li ◽  
Shaohua Wu ◽  
Zhao Tan ◽  
Chunping Yang

Sign in / Sign up

Export Citation Format

Share Document