scholarly journals POSSIBILITY OF ORGANIC WASTE INCLUSION AND IMPLEMENTATION IN A CLOSED-LOOP SYSTEM

Author(s):  
Ana Momčilović ◽  
Gordana Stefanović ◽  
Predrag Rajković ◽  
Biljana Milutinović ◽  
Dragiša Savić

Organic waste represents a challenging type of waste for implementation in the flows of a circular economy.  The main idea of the paper is the assessment of the inclusion possibility of different types of organic waste generated in one area into the flows of the circular economy. For this purpose, a mathematical model was developed and applied. Based on the mathematical model, the optimum mixing ratio of the several organic waste fractions, which will be subjected to the anaerobic digestion treatment and composting, is determined. Developed scenarios are based on the organic waste types and quantities available in the considered area. In each of the scenarios, process products, in the form of biogas and compost, are introduced into the flows of the circular economy. Based on the inputs and outputs in developed scenarios, the efficiency of the circular economy for each scenario is determined.

2014 ◽  
Vol 945-949 ◽  
pp. 2867-2870
Author(s):  
Shi Su ◽  
Jia Quan Yang ◽  
Jing Xi Zou ◽  
Wen Bin Zhang

In the process of designing high performance switch power, need to establish the accurate mathematical model of converter. The DC/DC converter generally has the characteristics of nonlinear, multimodal, time-varying, so need to use new methods to study it. The work of this paper aimed at non isolated DC / DC converter, established the mathematical model of Boost converter circuit by using the state space average method. Then design the closed-loop PI controller based on the Boost converter model, the closed-loop system has good static and dynamic performance, to meet the requirements of use.


2013 ◽  
Vol 436 ◽  
pp. 166-173
Author(s):  
A. Mihaela Mîţiu ◽  
Daniel Constantin Comeagă ◽  
Octavian G. Donţu

In this paper are presented some aspects of transmissibility control of mechanical systems with 1 DOF so that the effects of vibration on their action to be minimized. Some technical solutions that can be used for this purpose is analyzed. Starting from the mathematical model of an electro-mechanical system with 1 DOF, are identified the parameters which influence the effectiveness of the transmissibility control system using an electrodynamic actuator who work in "closed loop".


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


2021 ◽  
pp. 0734242X2110337
Author(s):  
Tea Sokač ◽  
Anita Šalić ◽  
Dajana Kučić Grgić ◽  
Monika Šabić Runjavec ◽  
Marijana Vidaković ◽  
...  

In this paper, two different types of biowaste composting processes were carried out – composting without and with bioaugmentation. All experiments were performed in an adiabatic reactor for 14 days. Composting enhanced with bioaugmentation was the better choice because the thermophilic phase was achieved earlier, making the composting time shorter. Additionally, a higher conversion of substrate (amount of substrate consumed) was also noticed in the process enhanced by bioaugmentation. A mathematical model was developed and process parameters were estimated in order to optimize the composting process. Based on good agreement between experimental data and the mathematical model simulation results, a three-level-four-factor Box-Behnken experimental design was employed to define the optimal process conditions for further studies. It was found that the air flow rate and the mass fraction of the substrate have the most significant effect on the composting process. An improvement of the composting process was achieved after altering the mentioned variables, resulting in shorter composting time and higher conversion of the substrate.


2012 ◽  
Vol 490-495 ◽  
pp. 1723-1727
Author(s):  
Jun Ting Wang ◽  
Guo Ping Liu ◽  
Wei Jin ◽  
Gen Fu Xiao

In the paper the mathematical model of the single inverted pendulum is established, on the base of the root locus and the control tasks the control system is made up of double closed-loop unit gain negative feedback and BP neural network controller. The results show that the inverted pendulum is efficiently controlled.


Author(s):  
J. W. Chew ◽  
S. Dadkhah ◽  
A. B. Turner

Sealing of the cavity formed between a rotating disc and a stator in the absence of a forced external flow is considered. In these circumstances the pumping action of the rotating disc may draw fluid into the cavity through the rim seal. Minimum cavity throughflow rates required to prevent such ingress are estimated experimentally and from a mathematical model. The results are compared with other workers’ measurements. Measurements for three different types of rim seal are reported for a range of seal clearances and for rotational Reynolds numbers up to 3 × 106. The mathematical model is found to correlate the experimental data reasonably well.


2005 ◽  
Vol 73 (2) ◽  
pp. 240-245 ◽  
Author(s):  
Zoltan Palmai

In the present study the examination of chip formation is focused on the primary shear zone, which is divided into two layers, and the variation of shear stress and temperature in time are given by two mechanical balance equations and three energy equations. All the five evolution differential equations are autonomous and nonlinear. The material characteristics are determined by an exponential constitutive equation. The mathematical model is suitable for the qualitative description of different types of chips, such as continuous chips and periodic or aperiodic shear localized chips, which is demonstrated by the general structure and typical solutions of the equation system.


Author(s):  
Volodymyr Topilnytskyy ◽  
Dariya Rebot

Reducing by grinding the size of various materials as raw materials for its further use is an urgent applied task. The requirements for the final product obtained by fine grinding are its homogeneity in shape and size of individual parts. It is necessary to reduce the time of the grinding operation, reduce energy consumption to obtain a unit of product of the required quality. One way to solve the problem is to use high-tech universal equipment, namely mills for fine grinding of materials. One way to solve the given problem is to use high-tech universal equipment, namely mills for fine grinding of materials. Their optimal design, construction, manufacture and operation are ensured by studying their dynamics at the stage of their development. In particular, such a study of the dynamics can be carried out on the basis of previously created mathematical models of these mills. The use of computer technology and appropriate mathematical CAD systems will speed up and optimize the process of studying the dynamics of the corresponding mill of fine grinding of materials. The purpose of the research is to build a mathematical nonlinear parameterized model of vibrating mill with two drives for bulk materials fine grinding for further study on its basis the dynamics of the mill with the development of optimal designs for mills with similar structure and the principle of operation and selection of optimal modes of operation. The mathematical model is presented as a system of expressions describing the of the mill points motion, which will include in the form of symbolic symbols all its parameters (kinematic, geometric, dynamic, force). This model is constructed using the Lagrange equation of the second kind and asymptotic methods of nonlinear mechanics. The mathematical model for studying of the dynamics of vibration mill with two drives for bulk materials fine grinding is nonlinear and universal. The non linearity of the model makes it possible to adequately determine of the above parameters influence on the amplitude of oscillations of the mill working chamber as the main factor in the intensity in the technological process of the fine grinding bulk materials fine grinding. The possibility of a wide range of changes in the parameters of the mill in the obtained models makes it universal based on the possibility of application for the study of dynamic processes in vibrating mills of different types with two or one drive which are different by shape, size, location of the suspension and more. This model can also be used to develop optimal designs for vibrating mills for different industries, which will be used to grind different types of materials in different volumes and productivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Liu ◽  
Yan Huang ◽  
He Zhang ◽  
Qiang Huang

AbstractIn the paper, adaptive neural fuzzy (ANF) PID control is applied on the stability analysis of phase-shifted full-bridge (PSFB) zero-voltage switch (ZVS) circuit, which is used in battery chargers of electric vehicles. At first, the small-signal mathematical model of the circuit is constructed. Then, by fuzzing the parameters of PID, a closed-loop system of the small-signal mathematical model is established. Further, after training samples collected from the fuzzy PID system by adaptive neural algorithm, an ANF PID controller is utilized to build a closed-loop system. Finally, the characteristics of stability, overshoot and response speed of the mathematical model and circuit model systems are analyzed. According to the simulation results of PSFB ZVS circuit, the three control strategies have certain optimizations in overshoot and adjustment time. Among them, the optimization effect of PID control in closed-loop system is the weakest. From the results of small-signal model and circuit model, the ANF PID system has highest optimization. Experiments demonstrate that the ANF PID system gives satisfactory control performance and meets the expectation of optimization design.


Sign in / Sign up

Export Citation Format

Share Document