Dual substrate limitation modeling and implications for mainstream deammonification

2017 ◽  
Vol 116 ◽  
pp. 95-105 ◽  
Author(s):  
Heather A. Stewart ◽  
Ahmed Al-Omari ◽  
Charles Bott ◽  
Haydee De Clippeleir ◽  
Chunyang Su ◽  
...  
1997 ◽  
Vol 47 (5) ◽  
pp. 554-559 ◽  
Author(s):  
S. Meenakshisundaram ◽  
G. Suresh ◽  
R. K. Fernando ◽  
K. Jenny ◽  
R. Sachidanandham ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 890
Author(s):  
Mostafa Abaali ◽  
Jérôme Harmand ◽  
Zoubida Mghazli

In this work, we consider a model of the biodenitrification process taking place in a spatially-distributed bioreactor, and we take into account the limitation of the kinetics by both the carbon source and the oxidized nitrogen. This model concerns a single type of bacteria growing on nitrate, which splits into adherent bacteria or free bacteria in the liquid, taking all interactions into account. The system obtained consists of four diffusion-convection-reaction equations for which we show the existence and uniqueness of a global solution. The system is approximated by a standard finite element method that satisfies an optimal a priori error estimate. We compare the results obtained for three forms of the growth function: single substrate limiting, “multiplicative” form, and “minimum” form. We highlight the limitation of the ‘ single substrate limiting model”, where the dependency of the bacterial growth on the nitrate is neglected, and find that the “minimum” model gives numerical results closer to the experimental results.


Author(s):  
Margarita Mercedes González-Brambila ◽  
Felipe Lopez-Isunza

This work deals with the theoretical and experimental study of the transient behaviour of a membrane-attached biofilm reactor (MARB) when it is exposed to a series of pulse injections of concentrated solutions of sodium acetate, used as a synthetic wastewater. The MARB is connected to a reservoir tank with full recirculation containing the synthetic wastewater, and oxygen permeates through the wall membrane to the biofilm attached to it. For the two experiments reported in this work air is also sparged into the residual water in the tank providing an extra source of oxygen that diffuses simultaneously from the membrane and from the liquid into the biofilm. A pseudo-heterogeneous model using Monod kinetics with dual substrate limitation was employed to predict the observed evolution of substrate and dissolved oxygen concentrations in the MABR. The model accounts for the counter-diffusion of substrate and oxygen as well as for the reaction within the biofilm. It also predicts biomass growth and the production of extra cellular polymers, which in turn causes the biofilm to grow. Transport and kinetic parameters previously estimated, are used in the model to predict the growth rates in the biofilm and allow the analysis of the relative contribution of the rates of mass transport by diffusion, convection and growth reaction.


2008 ◽  
Vol 294 (4) ◽  
pp. C1079-C1087 ◽  
Author(s):  
Mary A. Robinson ◽  
James E. Baumgardner ◽  
Virginia P. Good ◽  
Cynthia M. Otto

Nitric oxide (NO) production by inducible NO synthase (iNOS) is dependent on O2 availability. The duration and degree of hypoxia that limit NO production are poorly defined in cultured cells. To investigate short-term O2-mediated regulation of NO production, we used a novel forced convection cell culture system to rapidly (response time of 1.6 s) and accurately (±1 Torr) deliver specific O2 tensions (from <1 to 157 Torr) directly to a monolayer of LPS- and IFNγ-stimulated RAW 264.7 cells while simultaneously measuring NO production via an electrochemical probe. Decreased O2 availability rapidly (≤30 s) and reversibly decreased NO production with an apparent KmO2 of 22 (SD 6) Torr (31 μM) and a Vmax of 4.9 (SD 0.4) nmol·min−1·10−6 cells. To explore potential mechanisms of decreased NO production during hypoxia, we investigated O2-dependent changes in iNOS protein concentration, iNOS dimerization, and cellular NO consumption. iNOS protein concentration was not affected ( P = 0.895). iNOS dimerization appeared to be biphasic [6 Torr ( P = 0.008) and 157 Torr ( P = 0.258) >36 Torr], but it did not predict NO production. NO consumption was minimal at high O2 and NO tensions and negligible at low O2 and NO tensions. These results are consistent with O2 substrate limitation as a regulatory mechanism during brief hypoxic exposure. The rapid and reversible effects of physiological and pathophysiological O2 tensions suggest that O2 tension has the potential to regulate NO production in vivo.


2019 ◽  
Vol 3 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Gauri Karve ◽  
White Ted ◽  
Debby Eades ◽  
Mariam Sadaka ◽  
Greg Spencer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document