Linkage between bacterial community-mediated hydrogen peroxide detoxification and the growth of Microcystis aeruginosa

2021 ◽  
pp. 117784
Author(s):  
Minkyung Kim ◽  
Wonjae Kim ◽  
Yunho Lee ◽  
Woojun Park
PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33347 ◽  
Author(s):  
Haifeng Qian ◽  
Baolan Hu ◽  
Shuqiong Yu ◽  
Xiangjie Pan ◽  
Tao Wu ◽  
...  

2018 ◽  
Vol 65 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Dariusz Dziga ◽  
Anna Maksylewicz ◽  
Magdalena Maroszek ◽  
Sylwia Marek

In some conditions the growth of toxic cyanobacteria must be controlled by treatment with algicidal compounds. Hydrogen peroxide has been proposed as an efficient and relatively safe chemical which can remove cyanobacteria from the environment selectively, without affecting other microorganisms. However, the uncontrolled release of secondary metabolites, including toxins may occur after such a treatment. Our proposal presented in this paper is fast biodegradation of microcystin released after cell lysis induced by hydrogen peroxide. The effectiveness of both Sphingomonas sp. and heterologously expressed MlrA enzyme in the removal of the toxin from Microcystis aeruginosa culture has been investigated. The results indicate that neither Sphingomonas cells nor MlrA are affected by hydrogen peroxide in the concentrations which stop the growth of cyanobacteria. A several-fold microcystin reduction was documented in the presence of these agents with biodegradation ability. Our results provide evidence that such a combined treatment of water reservoirs dominated by microcystin-producing cyanobacteria may be a promising alternative which allows fast elimination of toxins from the environment.


2011 ◽  
Vol 71 (1) ◽  
pp. 57-63 ◽  
Author(s):  
IC. Moreira ◽  
I. Bianchini Jr. ◽  
AAH. Vieira

This study concerns the kinetics of bacterial degradation of two fractions (molecular mass) of dissolved organic matter (DOM) released by Microcystis aeruginosa. Barra Bonita Reservoir (SP, Brazil) conditions were simulated in the laboratory using the associated local bacterial community. The extent of degradation was quantified as the amount of organic carbon transferred from each DOM fraction (< 3 kDa and 3-30 kDa) to bacteria. The variation of bacteria morphotypes associated with the decomposition of each fraction was observed. To find the degradation rate constants (kT), the time profiles of the total, dissolved and particulate organic carbon concentrations were fitted to a first-order kinetic model. These rate constants were higher for the 3-30 kDa fraction than for the lighter fraction. Only in the latter fraction the formation of refractory dissolved organic carbon (DOC R) compounds could be detected and its rate of mass loss was low. The higher bacterial density was reached at 24 and 48 hours for small and higher fractions, respectively. In the first 48 hours of decomposition of both fractions, there was an early predominance of bacillus, succeeded by coccobacillus, vibrios and coccus, and from day 5 to 27, the bacterial density declined and there was greater evenness among the morphotypes. Both fractions of DOM were consumed rapidly, corroborating the hypothesis that DOM is readily available in the environment. This also suggests that the bacterial community in the inocula readily uses the labile part of the DOM, until this community is able to metabolise efficiently the remaining of DOM not degraded in the first moment. Given that M. aeruginosa blooms recur throughout the year in some eutrophic reservoirs, there is a constant supply of the same DOM which could maintain a consortium of bacterial morphotypes adapted to consuming this substrate.


Phycologia ◽  
2012 ◽  
Vol 51 (5) ◽  
pp. 567-575 ◽  
Author(s):  
Yi Ding ◽  
Nanqin Gan ◽  
Jie Li ◽  
Bojan Sedmak ◽  
Lirong Song

Sign in / Sign up

Export Citation Format

Share Document