Making Waves: Pathogen Inactivation by Electric Field Treatment: From Liquid Food to Drinking Water

2021 ◽  
pp. 117817
Author(s):  
Jianfeng Zhou ◽  
Yen-Con Hung ◽  
Xing Xie
Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Yu-Che Cheng ◽  
Shu-Lin Guo ◽  
Kun-Da Chung ◽  
Wei-Wen Hu

To sustain gene delivery and elongate transgene expression, plasmid DNA and cationic nonviral vectors can be deposited through layer-by-layer (LbL) assembly to form polyelectrolyte multilayers (PEMs). Although these macromolecules can be released for transfection purposes, their entanglement only allows partial delivery. Therefore, how to efficiently deliver immobilized genes from PEMs remains a challenge. In this study, we attempt to facilitate their delivery through the pretreatment of the external electrical field. Multilayers of polyethylenimine (PEI) and DNA were deposited onto conductive polypyrrole (PPy), which were placed in an aqueous environment to examine their release after electric field pretreatment. Only the electric field perpendicular to the substrate with constant voltage efficiently promoted the release of PEI and DNA from PEMs, and the higher potential resulted in the more releases which were enhanced with treatment time. The roughness of PEMs also increased after electric field treatment because the electrical field not only caused electrophoresis of polyelectrolytes and but also allowed electrochemical reaction on the PPy electrode. Finally, the released DNA and PEI were used for transfection. Polyplexes were successfully formed after electric field treatment, and the transfection efficiency was also improved, suggesting that this electric field pretreatment effectively assists gene delivery from PEMs and should be beneficial to regenerative medicine application.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Cen ◽  
Xinhua Chen

Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.


LWT ◽  
2021 ◽  
pp. 112304
Author(s):  
Aleksandra Djukić-Vuković ◽  
Saša Haberl Meglič ◽  
Karel Flisar ◽  
Ljiljana Mojović ◽  
Damijan Miklavčič

Sign in / Sign up

Export Citation Format

Share Document