Microplastics retained in stormwater control measures: Where do they come from and where do they go?

2021 ◽  
pp. 118008
Author(s):  
Vera S. Koutnik ◽  
Jamie Leonard ◽  
Joel B. Glasman ◽  
Jaslyn Brar ◽  
Hatice Ceylan Koydemir ◽  
...  
2018 ◽  
Vol 10 (10) ◽  
pp. 3666 ◽  
Author(s):  
Andrew Erickson ◽  
Vinicius Taguchi ◽  
John Gulliver

The methods for properly executing inspection and maintenance of stormwater control measures are often ambiguous and inconsistently applied. This paper presents specific guidelines for inspecting and maintaining stormwater practices involving media filtration, infiltration, ponds, and permeable pavements because these tend to be widely implemented and often unsatisfactorily maintained. Guidelines and examples are based on recent scientific research and practitioner experience. Of special note are new assessment and maintenance methods, such as testing enhanced filtration media that targets dissolved constituents, maintaining proper vegetation coverage in infiltration practices, assessing phosphorus release from pond sediments, and the development of compressed impermeable regions in permeable pavements and their implications for runoff. Inspection and maintenance examples provided in this paper are drawn from practical examples in Northern Midwest USA, but most of the maintenance recommendations do not depend on regional characteristics, and guidance from around the world has been reviewed and cited herein.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1582 ◽  
Author(s):  
Erin Rivers ◽  
Sara McMillan ◽  
Colin Bell ◽  
Sandra Clinton

Urban areas are increasingly adopting the use of ecologically-based technologies for stormwater management to mitigate the effects of impervious surface runoff on receiving water bodies. While stormwater control measures (SCMs) reduce runoff, their ability to influence ecosystem function in receiving streams is not well known. To understand the effect of SCMs on net ecosystem function in stream networks, we measured sediment denitrification in four streams across a gradient of urban and suburban residential development in Charlotte, NC. We evaluated the influence of SCM inputs on actual (DNF) and potential (DEA) denitrification activity in stream sediments at the SCM-stream confluence to quantify microbial processes and the environmental factors that control them. DNF was variable across sites, ranging from 0–6.60 mg-N·m−2·h−1 and highly correlated with in-stream nitrate (NO3-N) concentrations. Sites with a greater impervious area showed a pattern of significantly higher DEA rates upstream of the SCM compared to downstream, while sites with less imperviousness showed the opposite trend. We hypothesize that this is because of elevated concentrations of carbon and nitrogen provided by pond and wetland outflows, and stabilization of the benthic habitat by lower peak discharge. These results suggest that SCMs integrated into the watershed have the potential to create cascading positive effects on in-stream nutrient processing and thereby improve water quality; however, at higher levels of imperviousness, the capacity for SCMs to match the scale of the impacts of urbanization likely diminishes.


2019 ◽  
Vol 53 (7) ◽  
pp. 3634-3644 ◽  
Author(s):  
Jordyn M. Wolfand ◽  
Carolin Seller ◽  
Colin D. Bell ◽  
Yeo-Myoung Cho ◽  
Karl Oetjen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document