Role of nano-sized materials as lubricant additives in friction and wear reduction: A review

Wear ◽  
2021 ◽  
pp. 204206
Author(s):  
Bingxu Wang ◽  
Feng Qiu ◽  
Gary C. Barber ◽  
Qian Zou ◽  
Jing Wang ◽  
...  
Author(s):  
Hong Guo ◽  
Rui Liu ◽  
Alfonso Fuentes-Aznar ◽  
Patricia Iglesias Victoria

The lubricating ability of one halogen-free and one halogen-containing phosphonium-based ionic liquids are investigated as neat lubricants, lubricant additives and thin lubricant layers in steel-steel contact. The use of the ionic liquids in any of the three lubricating methods reduced friction and wear compared to a base mineral oil. The halogen-free ionic liquid outperformed the halogen-containing ionic liquid in the three methods of lubrication. The highest friction and wear reduction were obtained when ionic liquids were used as neat lubricants. Under this condition, friction reductions of 37.21% and 25.73 %, and wear reduction of 47.12% and 41.18% compared to the based mineral oil were obtained for the halogen-free and halogen-containing ionic liquids respectively. The wear mechanisms and surface interactions are discussed in terms of ionic liquid-metal surface interactions from optical and SEM images and EDS analysis.


2015 ◽  
Vol 7 (9) ◽  
pp. 5514-5521 ◽  
Author(s):  
Abdullah A. Alazemi ◽  
Vinodkumar Etacheri ◽  
Arthur D. Dysart ◽  
Lars-Erik Stacke ◽  
Vilas G. Pol ◽  
...  

2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Jia Ren ◽  
Kuiliang Gong ◽  
Gaiqing Zhao ◽  
Wenjing Lou ◽  
Xinhu Wu ◽  
...  

AbstractThe tribological performances of perfluoroalkylpolyethers (PFPE) with graphene (Gr), WS2, and the mixture of Gr and WS2 (Gr + WS2) before and after ultraviolet (UV), atomic oxygen (AO), and proton (Pr) irradiations were investigated. The composition and structure of PFPE, Gr, WS2, and Gr + WS2 were also analyzed to understand the effects of irradiation on the tribological behaviors of PFPE with additives. The results indicated that serious deterioration and degradation of PFPE took place and Gr was transformed to amorphous carbon after Pr irradiation, and surface oxidation of WS2 occurred under the irradiations of AO and Pr. Moreover, compared to PFPE and PFPE additized with Gr and WS2, PFPE with the addition of Gr + WS2 exhibited excellent friction and wear reduction before and after UV and AO irradiations. Graphical Abstract


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.


2021 ◽  
pp. 1-12
Author(s):  
Vimal Edachery ◽  
V. Swamybabu ◽  
Gurupatham Anand ◽  
Paramasamy Manikandan ◽  
Satish V. Kailas

Abstract Surface topography is a critical parameter that can influence friction and wear in engineering applications. In this work, the influence of surface topography directionality on seizure and scuffing initiation during tribological interactions is explored. For this, unidirectional sliding wear experiments were carried out in immersed lubrication conditions for various normal loads. The tribological interactions were studied using EN31-60 HRC flats and SAE52100-60HRC pins in a sphere on flat configuration. The results show that, in some cases, the sliding interactions in the initial cycles lead to a high friction coefficient of up to ∼0.68 in lubricated conditions, which was termed as ‘peak friction’, and this was accompanied by scuffing. The existence of peak friction was found to be dependent on surface topography directionality, especially when the directionality in topography was parallel to the sliding direction. Continuous ratchetting was found to be the cause of peak friction which was accompanied by seizure and scuffing. When the topography directionality was perpendicular or independent of sliding direction, elastic shakedown occurred at earlier cycles and prevented peak friction initiation, scuffing and also facilitated for higher steady-state friction values.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 66 ◽  
Author(s):  
Akshar Patel ◽  
Hong Guo ◽  
Patricia Iglesias

Contact friction between moving components leads to severe wear and failure of engineering parts, resulting in large economic losses. The lubricating ability of the protic ionic liquid, tri-[bis(2-hydroxyethylammonium)] citrate (DCi), was studied as a neat lubricant and as an additive in a mineral oil (MO) at various sliding velocities and constant load on an aluminum–steel contact using a pin-on-disk tribometer. Tribological tests were also performed at different concentrations of DCi. When DCi was used as an additive in MO, friction coefficient and wear volume were reduced for each sliding velocity, with a maximum friction and wear reduction of 16% and 40%, respectively, when 2 wt % DCi was added to MO at a sliding velocity of 0.15 m/s. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also applied to analyze the wear mechanism of the interface lubricated by MO and DCi as additive.


Sign in / Sign up

Export Citation Format

Share Document