scholarly journals Tribological Behaviour of Graphene Nanoplatelets as Additive in Pongamia Oil

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.

2008 ◽  
Vol 373-374 ◽  
pp. 452-455 ◽  
Author(s):  
Yang Zhao ◽  
Bin Shi Xu ◽  
Yi Xu ◽  
Pei Jing Shi ◽  
Xiao Li Wang ◽  
...  

Tribological properties of silicate particles as 50CC additive were evaluated on an end-face friction and wear tester. The morphologies, element distributions and micro-mechanical properties of the worn surface were investigated by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and nanoindentation tester, respectively. Results indicate that friction reduction and wear resistance properties of 50CC are improved effectively by adding silicate particles, whose main composition is Mg3[Si2O5](OH)4. The friction coefficient and surface temperature are reduced 60.6% and 35.6%. The nano-hardness of the self-repairing film is increased 30.03% compared with that of the ordinary film. It can be inferred that a high nano-hardness protective film composed of Mg, Al and O is formed on the worn surface, which has a good effect on the tribological performances.


Author(s):  
Pawandeep Singh ◽  
R.K. Mishra ◽  
Balbir Singh

Abstract This study aims to investigate the tribological behaviour of lamb bone ash (LBA) and boron carbide (B4C) reinforced ZA-27 hybrid metal matrix composites fabricated using a stir casting process. The weight percentage of LBA and B4C particles in the composites were varied from 0-5 wt.%. The composites have been evaluated for density, porosity and microhardness before tribological testing. Dry sliding friction and wear behaviour of composites were studied on a pin-on-disc tribometer by varying load from 10-50 N at a fixed sliding speed of 1 m/s. Also, to investigate the effect of sliding speed on friction and wear behaviour of composites, tests were carried out at 2 m/s and 3 m/s of sliding speed. A scanning electron microscope (SEM) was used for examining the microstructure and worn surface morphology of composite samples. SEM micrographs revealed the presence and homogeneous distribution of reinforcement particles, and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of LBA and B4C particles in the composites. Composites density decreased, and porosity increased with the addition of reinforcement particles. The microhardness of the 5 wt.% reinforced LBA composite improved by 18.38%, whereas hybrid composite containing (2.5 wt.% LBA + 2.5 wt.% B4C) showed an improvement of 42% compared to the base alloy. The coefficient of friction (COF) and wear loss increased with the increase in load, whereas COF decreased and wear loss increased with the increase in sliding speed. Composites showed superior wear resistance even at higher loads and sliding speeds. SEM micrographs of worn surface revealed adhesion and abrasion type of wear mechanisms. Therefore, with the improvement in wear resistance this developed composite can be used as a bearing material over monolithic ZA-27 alloy in the automotive sector.


2011 ◽  
Vol 194-196 ◽  
pp. 454-457
Author(s):  
Zhen Jiang Ma ◽  
Ji Hui Yin ◽  
Yang Jiang

This article presents a research on friction and wear properties of titanium composite lubricating grease containing ultrafine PTFE particles by using scanning electron microscopy to observe surface morphology of the worn steel balls and EDS to analysis the main elements in the worn surface of steel ball. The results show that the compound titanium grease with 3% ultrafine PTFE has the best wear and friction reduction properties. Its friction coefficient decrease about 25.5%, the diameter of wear scar decrease about 23.2%. The appropriate amount of PTFE particles go into the frictional surface with the grease, form the PTFE particle layer on the frictional surface, which reduces the direct contact of metal to metal, effectively reduces the friction and wear.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Wei Dai ◽  
Kyungjun Lee ◽  
Alexander M. Sinyukov ◽  
Hong Liang

In this research, rheological and tribological performance of additive V2O5 nanoparticles in a light mineral oil has been investigated. For rheological performance, the addition of 0.2 wt. % V2O5 could reduce the viscosity of the base oil for 6%. Considering the overall friction reduction in boundary, mixed, and hydrodynamic lubrication regimes, that with 0.1 wt. % V2O5 exhibited the best effect. Friction coefficient of base oil could be reduced by 33%. In terms of wear, the addition of 0.2 wt. % V2O5 showed the lowest wear rate, which is 44% reduction compared to base oil. Through Raman spectrum and energy dispersive spectroscopy (EDS) analysis, it was found that V2O5 involved tribochemical reaction during rubbing. Vanadium intermetallic alloy (V–Fe–Cr) was found to enhance the antiwear performance. This research revealed that V2O5 nanoparticles could be an effective additive to improve tribological performance.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Xu Song ◽  
Jiazhao Huang ◽  
Seet Wei Leu ◽  
Kun Zhou

The wear characteristics of a hearing-aid battery assembly, which consist of an acrylonitrile-butadiene-styren (ABS) button cell compartment and a stainless steel bracket with the locking knob, have been studied in the current work to predict its lifespan in service. The main failure mechanism is the worn-out of the cell compartment by the locking knob when changing the battery. Its wear rate is determined by the relationship between knob geometry and corresponding pressure distribution on the worn surface. Due to the third-body entrapment, the wear rate is highly influenced by the presence of the debris, and fortunately, it can be reduced by applying microsurface texture onto the knob. Experiments are conducted here to validate the wear reduction mechanism.


2019 ◽  
Vol 895 ◽  
pp. 212-217
Author(s):  
Deepak ◽  
T.P. Jeevan ◽  
S.R. Jayaram

Lubricants have a very crucial role in machinery industry for friction reduction and wear reduction between two relatively moving parts. The current study enlightens the works from various authors on evaluating the tribological behavior of environment friendly vegetable based oils as emerging biodegradable lubricants. The influences of the vegetable oils on friction and wear performance using different Tribometers were reported. The review focuses efforts on the development and commercialization of these vegetable based oils as industrial lubricants for manufacturing industries, mainly, metal forming and metal cutting. The review reveals that, many vegetable oils can be used as industrial lubricant, due to their exemplary attributes in terms of friction and wear reduction, which would help to decrease the universal demand of commercial lubricants which are based on petroleum resources to a great extent.


Author(s):  
Yuchun Huang ◽  
Xiaoliang Shi ◽  
Kang Yang ◽  
Xiyao Liu ◽  
Zhihai Wang

In order to analyze the effects of frictional heat on the tribological performance of Ni3Al matrix self-lubricating composite containing 6.2 vol.% graphene nanoplatelets (NB), the dry sliding friction tests of Ni3Al-based alloy and NB against GCr15 steel ball are undertaken under different loads from 3 to 18 N. The effects of different amount of frictional heat on the friction and wear mechanism of NB are also studied. The results show that tribological performance of NB is better than that of Ni3Al-based alloy under same working conditions. The addition of graphene nanoplatelets promotes the formation of stable glaze layer on worn surface. In addition, graphene nanoplatelets enhance the thermal conductivity of NB, which makes the surface temperature of wear scar of NB in a proper range (about 413 ℃) at 13 N and avoids the serious friction and wear caused by the accumulation of frictional heat. At 13 N, NB shows the lower friction coefficient (0.32) and wear rate (3.6 × 10−5 mm3·N−1·m−1). It is attributed to the appropriate local temperature (about 413 ℃) of worn surface, resulting in the formation of stable glaze layer with good friction reducing and wear resistance on worn surface. This study was meaningful for optimizing applied loads to realize the appropriate frictional heat and good tribological behavior of NB.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Adolfo Senatore ◽  
Vincenzo D'Agostino ◽  
Vincenzo Petrone ◽  
Paolo Ciambelli ◽  
Maria Sarno

The tribological behaviour of graphene oxide nanosheets in mineral oil was investigated under a wide spectrum of conditions, from boundary and mixed lubrication to elastohydrodynamic regimes. A ball-on-disc setup tribometer has been used to verify the friction reduction due to nanosheets prepared by a modified Hummers method and dispersed in mineral oil. Their good friction and antiwear properties may possibly be attributed to their small structure and extremely thin laminated structure, which offer lower shear stress and prevent interaction between metal interfaces. Furthermore, the results clearly prove that graphene platelets in oil easily form protective film to prevent the direct contact between steel surfaces and, thereby, improve the frictional behaviour of the base oil. This evidence is also related to the frictional coefficient trend in boundary regime.


Author(s):  
Abdulhakeem Javeed ◽  
Bibin John

Different compositions of graphene oxide (GO) and detonation nanodiamond (DND) nanoparticles with API CH-4 engine oil were tested on a reciprocating wear tester at high contact pressure. Significant reductions in friction and wear were observed. Wear surfaces were characterized by a 3D profiler, scanning electron microscopy and energy-dispersive X-ray spectroscopy to determine the surface topography, film build-up composition, mechanism of nanoadditive-assisted friction reduction and wear reduction characteristics. The wear tests indicated that the original engine liner segments containing surface texture with oil retention potential significantly lose their micropeaks and valleys during the test. Even though the surface texture got disturbed, the presence of nanoadditives in the lubricant led to a reduction in the coefficient of friction. Considerable reduction in the roughness level of the wear track associated with the use of a nanolubricant was also explored through the 3D profiler analysis. The surface roughness of the wear track produced while using a nanolubricant with 0.5 mg/l of detonation nanodiamond nanoparticles was 66% lower than the roughness of the wear track obtained with the base oil. The nanolubricant suspended with 1 mg/l detonation nanodiamond nanoparticles achieved a lower coefficient of friction earlier and a combination of detonation nanodiamond and GO at 0.5 mg/l concentration achieved the lowest coefficient of friction and wear at the end of the test duration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valentin R. Salinas Ruiz ◽  
Takuya Kuwahara ◽  
Jules Galipaud ◽  
Karine Masenelli-Varlot ◽  
Mohamed Ben Hassine ◽  
...  

AbstractFriction and wear reduction by diamond-like carbon (DLC) in automotive applications can be affected by zinc-dialkyldithiophosphate (ZDDP), which is widely used in engine oils. Our experiments show that DLC’s tribological behaviour in ZDDP-additivated oils can be optimised by tailoring its stiffness, surface nano-topography and hydrogen content. An optimal combination of ultralow friction and negligible wear is achieved using hydrogen-free tetrahedral amorphous carbon (ta-C) with moderate hardness. Softer coatings exhibit similarly low wear and thin ZDDP-derived patchy tribofilms but higher friction. Conversely, harder ta-Cs undergo severe wear and sub-surface sulphur contamination. Contact-mechanics and quantum-chemical simulations reveal that shear combined with the high local contact pressure caused by the contact stiffness and average surface slope of hard ta-Cs favour ZDDP fragmentation and sulphur release. In absence of hydrogen, this is followed by local surface cold welding and sub-surface mechanical mixing of sulphur resulting in a decrease of yield stress and wear.


Sign in / Sign up

Export Citation Format

Share Document