scholarly journals Investigation of the Tribological Performances of Graphene and WS2 Nanosheets as Additives for Perfluoroalkylpolyethers Under Simulated Space Environment

2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Jia Ren ◽  
Kuiliang Gong ◽  
Gaiqing Zhao ◽  
Wenjing Lou ◽  
Xinhu Wu ◽  
...  

AbstractThe tribological performances of perfluoroalkylpolyethers (PFPE) with graphene (Gr), WS2, and the mixture of Gr and WS2 (Gr + WS2) before and after ultraviolet (UV), atomic oxygen (AO), and proton (Pr) irradiations were investigated. The composition and structure of PFPE, Gr, WS2, and Gr + WS2 were also analyzed to understand the effects of irradiation on the tribological behaviors of PFPE with additives. The results indicated that serious deterioration and degradation of PFPE took place and Gr was transformed to amorphous carbon after Pr irradiation, and surface oxidation of WS2 occurred under the irradiations of AO and Pr. Moreover, compared to PFPE and PFPE additized with Gr and WS2, PFPE with the addition of Gr + WS2 exhibited excellent friction and wear reduction before and after UV and AO irradiations. Graphical Abstract

2018 ◽  
Vol 447 ◽  
pp. 368-373 ◽  
Author(s):  
Shusheng Xu ◽  
Jiayi Sun ◽  
Lijun Weng ◽  
Yong Hua ◽  
Weimin Liu ◽  
...  

2000 ◽  
Vol 12 (1) ◽  
pp. 43-52 ◽  
Author(s):  
John W Connell

Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin-film samples described herein were part of an atomic oxygen exposure (AOE) experiment and were exposed to primarily atomic oxygen (∼1×1019 atoms cm−2). The thin-film samples consisted of three phosphine oxide-containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, x-ray photo-electron spectroscopy and weight loss data, it was found that the exposure of these materials to atomic oxygen (AO) produces a phosphorus oxide layer on the surface of the samples. Earlier work has shown that this layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favourably with those obtained from samples exposed to AO and/or an oxygen plasma in ground-based exposure experiments. The results of the low Earth orbit AO exposure on these materials will be compared with those of ground-based exposure to AO.


2021 ◽  
Vol 11 (4) ◽  
pp. 294
Author(s):  
Irina Grigor’eva ◽  
Tatiana Romanova ◽  
Natalia Naumova ◽  
Tatiana Alikina ◽  
Alexey Kuznetsov ◽  
...  

The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Zhiguo Lu ◽  
Chuanyu Du ◽  
Qingcai Chen ◽  
Tianying Niu ◽  
Na Wang ◽  
...  

The friction and wear characteristics of spike-tooth material (65Mn steel) of Spike-Tooth Harrow in a two-stage peanut harvester were studied in this paper. The friction and wear tests of pin and disc on 65 manganese steel were carried out on the tribometer, then the wear loss and the friction coefficient were studied. The wear loss of the pin was acquired by calculating the mass of the pin before and after the experiment using an electronic balance. According to the actual working environment of peanut spring-finger, four variable parameters are set up: load, speed, soil moisture and soil type. The friction and wear characteristics of pins were studied under different loads, speeds and different soil environments. After wearing, the worn surface of the material was observed by scanning microscope and the wear mechanism was studied. The experimental results show that the wear of the pin increases with the increase of load and decreases with the increase of rotational speed in the same rotation number. Especially in the case of the sandy soil with 20% in moisture, a maximum wear loss of the pin is achieved.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.


2012 ◽  
Vol 504-506 ◽  
pp. 969-974 ◽  
Author(s):  
Harald Hetzner ◽  
Stephan Tremmel ◽  
Sandro Wartzack

In sheet bulk metal forming, locally adapted friction properties of the contact tool/workpiece are an appropriate means for the targeted enhancement of the material flow, enabling an improved form filling and lowered forming forces. However, the implementation of desirable friction conditions is not trivial. And further, friction is inseparably linked to wear and damage of the contacting surfaces. This calls for a methodological approach in order to consider tribology as a whole already in the early phases of process layout, so that tribological measures which allow fulfilling the requirements concerning local friction and wear properties of the tool surfaces, can already be selected during the conceptual design of the forming tools. Thin tribological coatings are an effective way of improving the friction and wear properties of functional surfaces. Metal-modified amorphous carbon coatings, which are still rather new to the field of metal forming, allow tackling friction and wear simultaneously. Unlike many other types of amorphous carbon, they have the mechanical toughness to be used in sheet bulk metal forming, and at the same time their friction properties can be varied over wide ranges by proper choice of the deposition parameters. Based on concrete research results, the mechanical, structural and special tribological properties of tungsten-modified hydrogenated amorphous carbon coatings (a-C:H:W) are presented and discussed against the background of the tribological requirements of a typical sheet bulk metal forming process.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 66 ◽  
Author(s):  
Akshar Patel ◽  
Hong Guo ◽  
Patricia Iglesias

Contact friction between moving components leads to severe wear and failure of engineering parts, resulting in large economic losses. The lubricating ability of the protic ionic liquid, tri-[bis(2-hydroxyethylammonium)] citrate (DCi), was studied as a neat lubricant and as an additive in a mineral oil (MO) at various sliding velocities and constant load on an aluminum–steel contact using a pin-on-disk tribometer. Tribological tests were also performed at different concentrations of DCi. When DCi was used as an additive in MO, friction coefficient and wear volume were reduced for each sliding velocity, with a maximum friction and wear reduction of 16% and 40%, respectively, when 2 wt % DCi was added to MO at a sliding velocity of 0.15 m/s. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also applied to analyze the wear mechanism of the interface lubricated by MO and DCi as additive.


Sign in / Sign up

Export Citation Format

Share Document