Preparation, Physicochemical Characterization and In Vitro and In Vivo Activity Against Heligmosomoides polygyrus of Novel Oral Formulations of Albendazole and Mebendazole

2020 ◽  
Vol 109 (5) ◽  
pp. 1819-1826 ◽  
Author(s):  
Valentin Buchter ◽  
Josefina Priotti ◽  
Darío Leonardi ◽  
María C. Lamas ◽  
Jennifer Keiser
2020 ◽  
Vol 4 ◽  
pp. 239784732097975
Author(s):  
Stéphanie Boué ◽  
Didier Goedertier ◽  
Julia Hoeng ◽  
Anita Iskandar ◽  
Arkadiusz K Kuczaj ◽  
...  

E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4127
Author(s):  
Aline de Cristo Soares Alves ◽  
Franciele Aline Bruinsmann ◽  
Silvia Stanisçuaski Guterres ◽  
Adriana Raffin Pohlmann

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


2009 ◽  
Vol 27 (2) ◽  
pp. 340-349 ◽  
Author(s):  
Elena Soto ◽  
Sebastian Haertter ◽  
Michael Koenen-Bergmann ◽  
Alexander Staab ◽  
Iñaki F. Trocóniz

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2196 ◽  
Author(s):  
Silvana Alfei ◽  
Anna Maria Schito ◽  
Guendalina Zuccari

Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Samrajya Lakshmi Yeruva ◽  
Prashant Kumar ◽  
Seetharam Deepa ◽  
Anand K Kondapi

Aim: We report here the development of tenofovir- and curcumin-loaded lactoferrin nanoparticles (TCNPs) as an HIV-microbicide. Materials & methods: TCNPs were subjected to various physicochemical characterization experiments, followed by in vitro and in vivo experiments to assess their efficacy. Results: TCNPs had a diameter of 74.31 ± 2.56 nm with a gross encapsulation of more than 61% for each drug. Nanoparticles were effective against HIV-1 replication, with an IC50 of 1.75 μM for curcumin and 2.8 μM for tenofovir. TCNPs provided drug release at the application site for up to 8–12 h, with minimal leakage into the systemic circulation. TCNPs showed spermicidal activity at ≥200 μM and induced minimal cytotoxicity and inflammation in the vaginal epithelium as revealed by histopathological and ELISA studies. Conclusion: We demonstrated that TCNPs could serve as a novel anti-HIV microbicidal agent in rats. [Formula: see text]


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Francesco Vacca ◽  
Caroline Chauché ◽  
Abhishek Jamwal ◽  
Elizabeth C Hinchy ◽  
Graham Heieis ◽  
...  

The IL-33-ST2 pathway is an important initiator of type 2 immune responses. We previously characterised the HpARI protein secreted by the model intestinal nematode Heligmosomoides polygyrus, which binds and blocks IL-33. Here, we identify H. polygyrus Binds Alarmin Receptor and Inhibits (HpBARI) and HpBARI_Hom2, both of which consist of complement control protein (CCP) domains, similarly to the immunomodulatory HpARI and Hp-TGM proteins. HpBARI binds murine ST2, inhibiting cell surface detection of ST2, preventing IL-33-ST2 interactions, and inhibiting IL-33 responses in vitro and in an in vivo mouse model of asthma. In H. polygyrus infection, ST2 detection is abrogated in the peritoneal cavity and lung, consistent with systemic effects of HpBARI. HpBARI_Hom2 also binds human ST2 with high affinity, and effectively blocks human PBMC responses to IL-33. Thus, we show that H. polygyrus blocks the IL-33 pathway via both HpARI which blocks the cytokine, and also HpBARI which blocks the receptor.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 220 ◽  
Author(s):  
María Ángeles Toledano Medina ◽  
Tania Merinas-Amo ◽  
Zahira Fernández-Bedmar ◽  
Rafael Font ◽  
Mercedes del Río-Celestino ◽  
...  

White and three types of black garlic (13, 32, and 45 days of aging, named 0C1, 1C2, and 2C1, respectively) were selected to study possible differences in their nutraceutic potential. For this purpose, garlic were physicochemically characterized (Brix, pH, aW, L, polyphenol, and antioxidant capacity), and both in vivo and in vitro assays were carried out. Black garlic samples showed higher polyphenol content and antioxidant capacity than the white ones. The biological assays showed that none of the samples (neither raw nor black garlic) produced toxic effects in the Drosophila melanogaster animal genetic model, nor exerted protective effects against H2O2, with the exception of the 0C1 black garlic. Moreover, only white garlic was genotoxic at the highest concentration. On the other hand, 0C1 black garlic was the most antigenotoxic substance. The in vivo longevity assays showed significant extension of lifespan at some concentrations of white and 0C1and 1C2 black garlic. The in vitro experiments showed that all of the garlic samples induced a decrease in leukemia cell growth. However, no type of garlic was able to induce proapoptotic internucleosomal DNA fragmentation. Taking into account the physicochemical and biological data, black garlic could be considered a potential functional food and used in the preventive treatment of age-related diseases. In addition, our findings could be relevant for black-garlic-processing agrifood companies, as the economical and timing costs can significantly be shortened from 45 to 13 days of aging.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Samar A Rizk ◽  
Manal A Elsheikh ◽  
Yosra S R Elnaggar ◽  
Ossama Y Abdallah

Aim: The aim of this study was to elaborate on ‘bioemulsomes,' novel biocompatible lipoprotein analogs for effective lymphatic transport of baicalin (BCL). Methods: BCL bioemulsomes were developed and optimized and in vitro physicochemical characterization performed. The bioavailability of BCL bioemulsomes compared with free BCL was investigated using in vivo pharmacokinetics studies. Finally, BCL lymphatic transport was assessed via cycloheximide blockade assay. Results: Optimized BCL-loaded nanoemulsomes showed promising in vitro characteristics that favor lymphatic targeting. In vivo pharmacokinetics showed a significant improvement in bioavailability over free BCL. A significant decrease in BCL emulsome absorption (33%) was exhibited after chemical blockage of the lymphatic pathway, confirming the lymphatic transport potential. Conclusion: Bioemulsomes could be a promising tool for bypassing BCL oral delivery hurdles as well as lymphatic transport, paving the way for potential treatment of lymphoma.


Sign in / Sign up

Export Citation Format

Share Document