scholarly journals Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes

2005 ◽  
Vol 286 (2) ◽  
pp. 464-471 ◽  
Author(s):  
Paula Stein ◽  
Fanyi Zeng ◽  
Hua Pan ◽  
Richard M. Schultz
Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4147-4156 ◽  
Author(s):  
P. Svoboda ◽  
P. Stein ◽  
H. Hayashi ◽  
R.M. Schultz

Specific mRNA degradation mediated by double-stranded RNA (dsRNA), which is termed RNA interference (RNAi), is a useful tool with which to study gene function in several systems. We report here that in mouse oocytes, RNAi provides a suitable and robust approach to study the function of dormant maternal mRNAs. Mos (originally known as c-mos) and tissue plasminogen activator (tPA, Plat) mRNAs are dormant maternal mRNAs that are recruited during oocyte maturation; translation of Mos mRNA results in the activation of MAP kinase. dsRNA directed towards Mos or Plat mRNAs in mouse oocytes effectively results in the specific reduction of the targeted mRNA in both a time- and concentration-dependent manner. Moreover, dsRNA is more potent than either sense or antisense RNAs. Targeting the Mos mRNA results in inhibiting the appearance of MAP kinase activity and can result in parthenogenetic activation. Mos dsRNA, therefore, faithfully phenocopies the Mos null mutant. Targeting the Plat mRNA with Plat dsRNA results in inhibiting production of tPA activity. Finally, effective reduction of the Mos and Plat mRNA is observed with stoichiometric amounts of Mos and Plat dsRNA, respectively.


2004 ◽  
Vol 32 (6) ◽  
pp. 952-956 ◽  
Author(s):  
C.A. Sledz ◽  
B.R.G. Williams

RNAi (RNA interference) has become a powerful tool to determine gene function. Different methods of expressing the short ds (double-stranded) RNA intermediates required for interference in mammalian systems have been developed, including the introduction of si (short interfering) RNAs by direct transfection or driven from transfected plasmids or lentiviral vectors encoding sh (short hairpin) RNAs. Although RNAi relies upon a high degree of specificity, recent findings suggest that off-target non-specific effects can be encountered. We found that transfection of siRNAs can results in an interferon-mediated activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway and global up-regulation of interferon-stimulated genes. This effect is mediated in part by the dsRNA-dependent protein kinase PKR, as this kinase is activated by the 21 bp siRNA, and is required in response to the siRNAs. However, the transcription factor IRF3 (interferon-regulatory factor 3) is also activated by siRNA as a primary response, resulting in the stimulation of genes independent of an interferon response. In cells deficient in IRF3, this response is blunted, but can be restored by re-introduction of IRF3. Thus siRNAs induce complex signalling responses in target cells, leading to effects beyond the selective silencing of specific genes.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


2005 ◽  
Vol 33 (Web Server) ◽  
pp. W589-W591 ◽  
Author(s):  
Y. Naito ◽  
T. Yamada ◽  
T. Matsumiya ◽  
K. Ui-Tei ◽  
K. Saigo ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 327 ◽  
Author(s):  
David Giesbrecht ◽  
Daniel Heschuk ◽  
Ian Wiens ◽  
David Boguski ◽  
Parker LaChance ◽  
...  

RNA interference (RNAi) techniques are being developed for a range of pest insect control technologies, including the sterile insect technique (SIT) and double-stranded RNA (dsRNA)-based insecticides. In SIT applications, where >99% of the released males should be sterile to meet industry standards, the efficiency of RNAi will need to be improved for many insect species if this technology is to be adopted. Endogenous dsRNases can impede dsRNA delivery in some insects, and, here, we investigated whether dsRNases in the midgut could limit RNAi efficacy in the mosquito Aedes aegypti. Ten putative dsRNases were identified in the Ae. aegypti genome, with two highly expressed in the midguts of larvae. Using an ex vivo assay, we observed that dsRNA was rapidly degraded within the mosquito larva’s gut. Double-stranded RNA targeting these two dsRNases, when fed to the larvae, effectively reduced gut dsRNase activity. When these dsRNase-specific dsRNAs were co-delivered with dsRNA targeting a cyan fluorescent protein (CFP) reporter gene, greater knockdown of CFP fluorescence was observed. These results suggest that inhibiting dsRNase activity could enable the implementation of RNAi-based mosquito control methods.


Sign in / Sign up

Export Citation Format

Share Document