fungal inhibition
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Nasrollahzadeh ◽  
Samira Mokhtari ◽  
Morteza Khomeiri ◽  
Per Saris

AbstractToday, a few hundred mycotoxins have been identified and the number is rising. Mycotoxin detoxification of food and feed has been a technically uphill task for the industry. In the twenty-first century, the public demand is healthy food with minimum use of chemicals and preservatives. Among all the fungal inhibition and mycotoxin detoxification methods so far developed for food, biopreservation and biodetoxification have been found safe and reliable. Nowadays, lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and mycotoxin detoxification capability. The occurrence of fungul growth in the food chain can lead to health problems such as mycotoxicosis and cancer to humans due to producing mycotoxins such as aflatoxins. Biopreservation is among the safest and most reliable methods for inhibition of fungi in food. This review highlights the great potential of LAB as biodetoxificant by summarizing various reported detoxification activities of LAB against fungal mycotoxins released into foods. Mechanisms of mycotoxin detoxification, also the inherent and environmental factors affecting detoxifying properties of LAB are also covered.


2021 ◽  
Vol 8 (1) ◽  
pp. 30
Author(s):  
Ahmed Noah Badr ◽  
Lukasz Stepien ◽  
Kinga Drzewiecka ◽  
Salman S. Alharthi ◽  
Khaled Selim ◽  
...  

Fruit byproducts are considered a high source of bioactive molecules, which possess antioxidant activities. These antioxidants play principal functions in mycotoxin reduction. This study aimed to evaluate crude mandarin byproduct extract for its chemical interaction with fungal growth and suppression of mycotoxin production, and to illustrate whether the impact was regarding individual molecules or a synergistic antioxidation process. Extract contents were analyzed for their phenolic, flavonoids, and antioxidant activity. The fatty acid composition and volatile components were determined using the GC apparatus. The influence of the extract evaluated versus the standard phenolics of trans-ferulic and hesperidin were evaluated. The liposome technique was applied to prevent the antioxidant properties of the bioactive extract. The anti-mycotoxigenic effects of the liposomal and non-liposomal extract were determined in fungal media against the standard phenolics. The results manifested ferulic (235.54 ± 3.34 mg/100 g) and hesperidin (492.11 ± 1.15 mg/100 g) as high phenolics in the extract. Limonene was the main volatile (67.54 ± 1.74%), as well antioxidant activities determined in considerable values. The crude extract recorded efficiency as an anti-Fusarium agent, but less than the standard hesperidin applied in fungal media. The bioactive extract recorded possessed a reduction influence on mycotoxin production. The impact may be joining with its fungal inhibition or its component activity with the active groups on the mycotoxin molecule. The formation of liposomal extract enhanced its efficacy in mycotoxin reduction. This enhancement may illustrate its protective properties for antioxidant components of the bioactive extract.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5837
Author(s):  
Isshadiba Faikah Mustafa ◽  
Mohd Zobir Hussein ◽  
Abu Seman Idris ◽  
Nur Hailini Zainol Hilmi ◽  
Sharida Fakurazi

Reports on fungicide-based agronanochemicals in combating disastrous basal stem rot disease in the oil palm industry are scant. Herein, we describe the potential of fungicide nanodelivery agents based on hexaconazole-micelle systems produced using three different surfactants; sodium dodecylbenze sulfonate (SDBS), sodium dodecyl sulfate (SDS) and Tween 80 (T80). The resulting nanodelivery systems were characterized and the results supported the encapsulation of the fungicide into the micelles of the surfactants. We have investigated in detail the size-dependent effects of the as-synthesized micelles towards the inhibition growth of Ganoderma Boninense fungi. All the nanodelivery systems indicate that their size decreased as the surfactant concentration was increased, and it directly affects the fungal inhibition. It was also found that Tween 80, a non-ionic surfactant gave the lowest effective concentration, the EC50 value of 2, on the pathogenic fungus Ganoderma boninense compared to the other anionic surfactants; SDBS and SDS. This study opens up a new generation of agronanofungicide of better efficacy for Ganoderma disease treatment.


2021 ◽  
pp. 2150034
Author(s):  
M. Suganya ◽  
R. Baskaran ◽  
V. S. Nagarethinam ◽  
A. R. Balu

This paper reports the photoconductive and antimicrobial properties of SnS2–CdO and SnS2-NiO nanocomposites green synthesized using Psidium guajava leaf extract. X-ray diffraction studies reveal that the SnS2–CdO nanocomposite exhibits hexagonal SnS2 and cubic CdO diffraction peaks; whereas the SnS2–NiO nanocomposite exhibits hexagonal SnS2 and cubic NiO diffraction peaks. SEM image of the bio-synthesized SnS2–CdO nanocomposite confirmed nanoneedles with grains being well distributed. Regular shaped grains with decreased sizes were observed for the SnS2–NiO nanocomposite. Nanosized grains were observed from the TEM images. The existence of elements Sn, S, Cd, O in SnS2–CdO nanocomposite; Sn, S, Ni, O in SnS2–NiO nanocomposite was confirmed from the EDX and XPS spectra. Increased photosensitivity value was realized for the SnS2–CdO nanocomposite. Both the composites showed good fungal inhibition property against Aspergillus terreus fungi not only by the physical, chemical and biological processes but also owing to phyto-constituents in the leaf extract.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Nattakanwadee Khumpirapang ◽  
Srikanjana Klayraung ◽  
Singkome Tima ◽  
Siriporn Okonogi

The aim of the present study was to develop a microemulsion (ME) containing Alpinia galanga oil (AGO), 1,8-cineole (C), or methyl eugenol (M) as an active pharmaceutical ingredient (API) for enhancing their antimicrobial activities. Agar diffusion, broth microdilution, and killing kinetics were used for antimicrobial evaluations. The ME composed of 30% API, 33.4% Tween 80, 16.6% ethanol, and 20% water appeared as translucent systems with droplet size and polydispersity index of 101.1 ± 1.3 nm and 0.3 ± 0.1, 80.9 ± 1.1 nm and 0.4 ± 0.1, and 96.6 ± 2.0 nm and 0.2 ± 0.1 for ME-AGO, ME-C, and ME-M, respectively. These ME formulations showed minimum bacterial concentrations of 3.91–31.25 µg/mL and 50% fungal inhibition concentrations of 1.83 ± 0.27–0.46 ± 0.13 µg/mL, 2–4 times stronger, and faster kinetic killing rate than their respective API alone. Keeping the ME formulations at 4 °C, 25 °C, and 40 °C for 12 weeks did not affect their activities against fungi and Gram-negative bacteria, but the high temperature of 40 °C decreased their activities against Gram-positive bacteria. It is concluded that ME is a promising delivery system for AGO and its major compounds to enhance their water miscibility and antimicrobial activities.


2020 ◽  
Vol 9 (3) ◽  
pp. 173-178
Author(s):  
Hafiz M. Saqib ◽  
Sobia Chohan ◽  
Muhammad Abid

Sunflower is an important oil seed crop of Pakistan, comprising 20% proteins and 38-45% oil contents. Alternaria leaf blight (ALB) caused by Alternaria alternata, is one of the devastating diseases of sunflower. Six different fungicides viz., difenoconazole, hexaconazole, azoxystrobin, dimethomorph + mancozeb, myclobutanil and Sulphur were tested at different concentrations (10, 20, 30 ppm) in laboratory and in greenhouse. Fungicides performed best in the laboratory were also investigated in greenhouse against Alternaria leaf blight of sunflower. In in vitro study, Hexaconazole showed 100 % growth inhibition of A. alternata at 30 ppm followed by 70% at 20 ppm and 62% at 10 ppm. Difenoconazole proved as the 2nd best fungicide with 77% fungal inhibition at 30 ppm, 75.8% at 20 ppm and 71% at 10 ppm. Azoxystrobin was the least effective fungicide with 24%, 28%, 34% fungal inhibition at 10, 20 and 30 ppm, respectively. Twelve cultivars of sunflower were screened against blight disease in pot experiment to check the fungicides at different level of susceptibility in greenhouse. Screening result showed that FH 702 was the  highest susceptible variety with mean value 7.6. Greenhouse study of disease inhibition effect of fungicides also showed that hexaconazole fungicide produced the best results against A. alternata with 42% disease reduction in FH 702 cultivar and 25 % in FH 696 cultivar as compared to control (83%). The results showed that no fungicide provided full disease inhibition, so, further investigation is needed to find the new chemistry against blight disease of sunflower crop


2020 ◽  
Vol 8 (6) ◽  
pp. 179-187
Author(s):  
Titik Taufikurohmah ◽  
Tasha Anandya Tantyani

This Research on the antibacterial and antifungal activity of nanosilver against Neisseria gonorrhoeae and Candida albincas fungi has been carried out. The purpose of this study was to determine antibacterial activity of nanosilver against Neisseria gonorrhoeae and antifungal activity against Candida albincas. Synthesis Nanosilver uses bottom up method and characterized using UV-Vis Spectrophotometer. Nanosliver concentrations used were 30, 40, 50, and 60 ppm. Antibacterial and antifungal activity tests using disk diffusion method. Observations obtained in form of the presence or absence of clear zones formed around paper discs indicate the inhibition of nanosilver on microbial growth. The results of testing the antifungal activity of Candida albicans on nanosilver with concentrations of 30, 40, 50 and 60 ppm resulted in clear zones of 9.73 nm, 11.46 nm, 11.93 nm, and 13 nm with fungal inhibition response categories is medium and strong. The results antibacterial activity test of Neisseria gonorrhoeae on nanosilver with concentrations of 30, 40, 50 and 60 ppm did not show any clear zone around the disc, it showed that nanosilver in this study did not have antibacterial activity against Neisseria gonorrhoeae.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 516
Author(s):  
Isaac G. Deaguero ◽  
Md Nurul Huda ◽  
Victor Rodriguez ◽  
Jade Zicari ◽  
Taslim A. Al-Hilal ◽  
...  

Opportunistic fungal infections are responsible for over 1.5 million deaths per year. This has created a need for highly effective antifungal medication to be as potent as possible. In this study, we improved the efficacy of a common over the counter (OTC) antifungal skin medication, miconazole, by encapsulating nano-molecules of the drug in cholesterol/sodium oleate nano-vesicles. These nano-vesicles were characterized to optimize their size, zeta potential, polydispersity index and encapsulation efficiency. Furthermore, these nano-vesicles were compared to a conventional miconazole-based commercially available cream to determine potential improvements via permeation through the stratum corneum, cytotoxicity, and antifungal capabilities. Our results found that the vesicle size was within the nano range (~300 nm), with moderate polydispersity and stability. When compared with the commercially available cream, Actavis, as well as free miconazole, the miconazole nano-vesicle formulation displayed enhanced fungal inhibition by a factor of three or more when compared to free miconazole. Furthermore, with smaller nanoparticle (NP) sizes, higher percentages of miconazole may be delivered, further enhancing the efficacy of miconazole’s antifungal capability. Cytotoxicity studies conducted with human dermal fibroblast cells confirm its biosafety and biocompatibility, as cell survival rate was observed to be twofold higher in nano-vesicle formulation than free miconazole. This formulation has the potential to treat fungal infections through increasing the retention time in the skin, improving the treatment approach, and by enhancing the efficacy via the use of nano-vesicles.


2020 ◽  
Vol 24 (1) ◽  
pp. 23-33
Author(s):  
Thanyanuch Kriangkraipipat ◽  
Nattawat Wittayakunsathit ◽  
Thawat Ngamsritrakul ◽  
Sirima Panyametheekul

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 363 ◽  
Author(s):  
Wael A. A. Abo Elgat ◽  
Ayman S. Taha ◽  
Martin Böhm ◽  
Eva Vejmelková ◽  
Wael S. Mohamed ◽  
...  

In the present study, novel mixed additives of Chitosan or Paraloid B-72 combined with nanoparticles (NPs) of Ag, ZnO, or cellulose (NCL) were examined for their effects on the mechanical, optical, and fungal inhibition properties of the papersheets produced. The highest tensile, tear, and burst indices of the papersheets were observed for flax pulp treated with additives of Paraloid B-72 + ZnO NP (1%), Chitosan + ZnO NP (3%), and Chitosan + NCL (3%) at levels of 59.93 N·m/g, 18.45 mN·m2/g, and 6.47 kPa·m2/g, respectively. Chitosan + ZnO NP (1%) added to flax pulp showed the highest fungal mycelial inhibition (FMI) (1.85%) against Aspergillus flavus. Chitosan + Ag NP (1%) exhibited the highest FMI percentage (11.48%) when added to pulp against A. terreus. Pulp treated with Paraloid B-72 + Ag NP (1%) exhibited the highest activity against Stemphylium solani with an FMI value of 3.7%. The results indicate that the technological properties of the papersheets were enhanced with the addition of novel mixtures to the pulp.


Sign in / Sign up

Export Citation Format

Share Document