scholarly journals The genetic hierarchy that controls gastrulation in Drosophila

2008 ◽  
Vol 319 (2) ◽  
pp. 476
Author(s):  
Sam Mathew ◽  
Martina Rembold ◽  
Maria Leptin
Keyword(s):  
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Glenda Comai ◽  
Eglantine Heude ◽  
Sebastian Mella ◽  
Sylvain Paisant ◽  
Francesca Pala ◽  
...  

In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.


Nature ◽  
10.1038/21892 ◽  
1999 ◽  
Vol 400 (6739) ◽  
pp. 69-73 ◽  
Author(s):  
Baljinder S. Mankoo ◽  
Nina S. Collins ◽  
Peter Ashby ◽  
Elena Grigorieva ◽  
Larysa H. Pevny ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4095-4102 ◽  
Author(s):  
R.E. Krasnow ◽  
L.L. Wong ◽  
P.N. Adler

The tissue polarity genes in Drosophila are required to coordinate cell polarity within the plane of the epidermis. Evidence to date suggests that these genes may encode components of a novel signal transduction pathway. Three of the genes, frizzled (fz), dishevelled (dsh), and prickle (pk) share a similar tissue polarity phenotype, suggesting that they function together in a single process. dsh is also known to function as a mediator of wingless (wg) signaling in a variety of developmental patterning processes in the fly. In this study, we make use of a fz transgene and a hypomorphic fz allele as genetic tools in an attempt to order these genes in a genetic hierarchy. Our results argue that dsh encodes a dosage sensitive component required for fz function and that it likely acts downstream of fz in the generation of tissue polarity. Our findings suggest that dsh may have a general role in signal transduction, perhaps as a component of a receptor complex.


2013 ◽  
Vol 452 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Qun Lu ◽  
Fan Wu ◽  
Hong Zhang

Autophagy is a lysosome-mediated degradation process that involves the formation of an enclosed double-membrane autophagosome. Yeast genetic screens have laid the groundwork for a molecular understanding of autophagy. The process, however, exhibits fundamental differences between yeast and higher eukaryotes. Very little is known about essential autophagy components specific to higher eukaryotes. Recent studies have shown that a variety of protein aggregates are selectively removed by autophagy (a process termed aggrephagy) during Caenorhabditis elegans embryogenesis, establishing C. elegans as a multicellular genetic model to delineate the autophagic machinery. The genetic screens were carried out in C. elegans to identify essential autophagy genes. In addition to conserved and divergent homologues of yeast Atg proteins, several autophagy genes conserved in higher eukaryotes, but absent from yeast, were isolated. The genetic hierarchy of autophagy genes in the degradation of protein aggregates in C. elegans provides a framework for understanding the concerted action of autophagy genes in the aggrephagy pathway.


1999 ◽  
Vol 10 (7) ◽  
pp. 2329-2342 ◽  
Author(s):  
Beth E. Stronach ◽  
Patricia J. Renfranz ◽  
Brenda Lilly ◽  
Mary C. Beckerle

A genetic hierarchy of interactions, involving myogenic regulatory factors of the MyoD and myocyte enhancer-binding 2 (MEF2) families, serves to elaborate and maintain the differentiated muscle phenotype through transcriptional regulation of muscle-specific target genes. Much work suggests that members of the cysteine-rich protein (CRP) family of LIM domain proteins also play a role in muscle differentiation; however, the specific functions of CRPs in this process remain undefined. Previously, we characterized two members of the Drosophila CRP family, the muscle LIM proteins Mlp60A and Mlp84B, which show restricted expression in differentiating muscle lineages. To extend our analysis ofDrosophila Mlps, we characterized the expression of Mlps in mutant backgrounds that disrupt specific aspects of muscle development. We show a genetic requirement for the transcription factor dMEF2 in regulating Mlp expression and an ability of dMEF2 to bind, in vitro, to consensus MEF2 sites derived from those present inMlp genomic sequences. These data suggest that theMlp genes may be direct targets of dMEF2 within the genetic hierarchy controlling muscle differentiation. Mutations that disrupt myoblast fusion fail to affect Mlp expression. In later stages of myogenic differentiation, which are dedicated primarily to assembly of the contractile apparatus, we analyzed the subcellular distribution of Mlp84B in detail. Immunofluorescent studies revealed the localization of Mlp84B to muscle attachment sites and the periphery of Z-bands of striated muscle. Analysis of mutations that affect expression of integrins and α-actinin, key components of these structures, also failed to perturb Mlp84B distribution. In conclusion, we have used molecular epistasis analysis to position Mlp function downstream of events involving mesoderm specification and patterning and concomitant with terminal muscle differentiation. Furthermore, our results are consistent with a structural role for Mlps as components of muscle cytoarchitecture.


Author(s):  
Glenda Comai ◽  
Eglantine Heude ◽  
Sebastian Mella ◽  
Sylvain Paisant ◽  
Francesca Pala ◽  
...  

2019 ◽  
Author(s):  
Glenda Comai ◽  
Églantine Heude ◽  
Sebastien Mella ◽  
Sylvain Paisant ◽  
Francesca Pala ◽  
...  

SUMMARYIn most vertebrates, the upper digestive tract is composed of muscularised jaws linked to the esophagus that permit food uptake and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to Met/HGF signalling for antero-posterior migration of esophagus muscle progenitors, where HGF ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulate esophagus myogenesis and identify distinct genetic signatures that can be used as a framework to interpret pathologies arising within CPM derivatives.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 785-801 ◽  
Author(s):  
M.A. Sturtevant ◽  
E. Bier

The Drosophila rhomboid (rho) and Egf-r genes are members of a small group of genes required for the differentiation of various specific embryonic and adult structures. During larval and early pupal development expression of rho in longitudinal vein primordia mediates the localized formation of wing veins. In this paper we investigate the genetic hierarchy guiding vein development, by testing for genetic interactions between rho alleles and a wide variety of wing vein mutations and by examining the pattern of rho expression in mutant developing wing primordia. We identify a small group of wing vein mutants that interact strongly with rho. Examination of rho expression in these and other key vein mutants reveals when vein development first becomes abnormal. Based on these data and on previous genetic analyses of vein formation we present a sequential model for establishment and differentiation of wing veins.


Sign in / Sign up

Export Citation Format

Share Document