lim proteins
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 1)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shengxing Li ◽  
Zhuogong Shi ◽  
Qiurong Zhu ◽  
Liang Tao ◽  
Wenhui Liang ◽  
...  

Abstract Background Chestnut seeds are important kinds of edible nuts rich in starch and protein. The characteristics and nutrient contents of chestnut have been found to show obvious metaxenia effects in previous studies. To improve the understanding of the effect of metaxenia on chestnut starch and sucrose metabolism, this study used three varieties of chestnut, ‘Yongfeng 1’, ‘YongRen Zao’ and ‘Yimen 1’, as male parents to pollinate the female parent, ‘Yongfeng 1’, and investigated the mechanisms of starch and sucrose metabolism in three starch accumulation stages (70 (S1), 82 (S2), and 94 (S3) days after pollination, DAP) in chestnut seed kernels. Result Most carbohydrate metabolism genes were highly expressed in YFF (self-pollinated ‘Yongfeng 1’) in stage S2 and in YFR (‘Yongfeng 1’ × ‘Yongren Zao’) and YFM (‘Yongfeng 1’ × ‘Yimen 1’) in stage S3. In stage S3, hub genes encoding HSF_DNA-binding, ACT, Pkinase, and LIM proteins and four transcription factors were highly expressed, with YFF showing the highest expression, followed by YFR and YFM. In addition, transcriptome analysis of the kernels at 70, 82 and 94 DAP showed that the starch granule-bound starch synthase (EC 2.4.1.242) and ADP-glucose pyrophosphorylase (EC 2.7 .7.27) genes were actively expressed at 94 DAF. Chestnut seeds regulate the accumulation of soluble sugars, reducing sugars and starch by controlling glycosyl transferase and hydrolysis activity during development. Conclusion These results and resources have important guiding significance for further research on starch and sucrose metabolism and other types of metabolism related to chestnut metaxenia.


2021 ◽  
Author(s):  
Evan M. Harvey ◽  
Murad Almasri ◽  
Hugo R. Martinez

Cardiomyopathies (CMs) encompass a heterogeneous group of structural and functional (systolic and diastolic) abnormalities of the myocardium and are either confined to the cardiovascular system or are part of a systemic disorder. CMs represent a leading cause of morbidity and mortality and account for a significant percentage of death and cardiac transplantation. The 2006 American Heart Association (AHA) classification grouped CMs into primary (genetic, mixed, or acquired) or secondary (i.e., infiltrative or autoimmune). In 2008, the European Society of Cardiology classification proposed subgrouping CM into familial or genetic and nonfamilial or nongenetic forms. In 2013, the World Heart Federation recommended the MOGES nosology system, which incorporates a morpho-functional phenotype (M), organ(s) involved (O), the genetic inheritance pattern (G), an etiological annotation (E) including genetic defects or underlying disease/substrates, and the functional status (S) of a particular patient based on heart failure symptoms. Rapid advancements in the biology of cardio-genetics have revealed substantial genetic and phenotypic heterogeneity in myocardial disease. Given the variety of disciplines in the scientific and clinical fields, any desired classification may face challenges to obtaining consensus. Nonetheless, the heritable phenotype-based CM classification offers the possibility of a simple, clinically useful diagnostic scheme. In this chapter, we will describe the genetic basis of dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), LV noncompaction cardiomyopathy (LVNC), and restrictive cardiomyopathy (RCM). Although the descriptive morphologies of these types of CM differ, an overlapping phenotype is frequently encountered within the CM types and arrhythmogenic pathology in clinical practice. CMs appear to originate secondary to disruption of “final common pathways.” These disruptions may have purely genetic causes. For example, single gene mutations result in dysfunctional protein synthesis causing downstream dysfunctional protein interactions at the level of the sarcomere and a CM phenotype. The sarcomere is a complex with multiple protein interactions, including thick myofilament proteins, thin myofilament proteins, and myosin-binding proteins. In addition, other proteins are involved in the surrounding architecture of the sarcomere such as the Z-disk and muscle LIM proteins. One or multiple genes can exhibit tissue-specific function, development, and physiologically regulated patterns of expression for each protein. Alternatively, multiple mutations in the same gene (compound heterozygosity) or in different genes (digenic heterozygosity) may lead to a phenotype that may be classic, more severe, or even overlapping with other disease forms.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pankaj Pathak ◽  
Yotam Blech-Hermoni ◽  
Kalpana Subedi ◽  
Jessica Mpamugo ◽  
Charissa Obeng-Nyarko ◽  
...  

AbstractMechanical stress induced by contractions constantly threatens the integrity of muscle Z-disc, a crucial force-bearing structure in striated muscle. The PDZ-LIM proteins have been proposed to function as adaptors in transducing mechanical signals to preserve the Z-disc structure, however the underlying mechanisms remain poorly understood. Here, we show that LDB3, a well-characterized striated muscle PDZ-LIM protein, modulates mechanical stress signaling through interactions with the mechanosensing domain in filamin C, its chaperone HSPA8, and PKCα in the Z-disc of skeletal muscle. Studies of Ldb3Ala165Val/+ mice indicate that the myopathy-associated LDB3 p.Ala165Val mutation triggers early aggregation of filamin C and its chaperones at muscle Z-disc before aggregation of the mutant protein. The mutation causes protein aggregation and eventually Z-disc myofibrillar disruption by impairing PKCα and TSC2-mTOR, two important signaling pathways regulating protein stability and disposal of damaged cytoskeletal components at a major mechanosensor hub in the Z-disc of skeletal muscle.


2020 ◽  
Author(s):  
Shengxing Li ◽  
Zhuogong Shi ◽  
Zhiheng Zhao ◽  
Qiurong Zhu ◽  
Liang Tao ◽  
...  

Abstract Background: Chestnut is an important kind of edible nut rich in starch and protein. The characteristics and nutrient contents of chestnut have been found to show obvious metaxenia effects in previous studies. To improve the understanding of the metaxenia effect on chestnut starch and sucrose metabolism, this study used three varieties of chestnut, ‘Yongfeng 1’, ‘Yong Renzao’ and ‘Yimeng 1’, as male parents to pollinate ‘Yongfeng 1’, as the female parent, and studied the mechanisms of starch and sucrose metabolism in three starch accumulation stages (70 (S1), 82 (S2), and 94 (S3) days after pollination , DAP) in the chestnut seed kernel.Result: Most carbohydrate metabolism genes were highly expressed in YFF in stage S2 and in YFR and YFM in stage S3. In stage S3, hub genes encoding HSF_DNA-binding, ACT, Pkinase, and LIM proteins and four transcription factors were highly expressed, with YFF showing the higest expression, followed by YFR and, finally, YFM. In addition, transcriptome analysis of the kernels at 70, 82 and 94 DAP showed that the starch granule-bound starch synthase (EC 2.4.1.242) and ADP-glucose pyrophosphorylase (EC 2.7 .7.27) genes were actively expressed at 94 DAF. Chestnut seeds regulate the accumulation of soluble sugars, reducing sugars and starch by controlling glycosyl transferase and hydrolysis activity during development.Conclusion: These studies and resources have important guiding significance for further research on starch and sucrose metabolism and other types of metabolism related to chestnut metaxenia.


2020 ◽  
Author(s):  
Xiaoyu Sun ◽  
Donovan Y. Z. Phua ◽  
Lucas Axiotakis ◽  
Mark A. Smith ◽  
Elizabeth Blankman ◽  
...  

SummaryMechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators; however, it is unclear if there is a direct link between these two functions. Here we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically-stimulated cells through their tandem LIM domains. A minimal actin-myosin reconstitution system reveals that representatives of all three families directly bind F-actin only in the presence of mechanical force. Point mutations at a site conserved in each LIM domain of these proteins selectively disrupt tensed F-actin binding in vitro and cytoskeletal localization in cells, demonstrating a common, avidity-based mechanism. Finally, we find that binding to tensed F-actin in the cytoplasm excludes the cancer-associated transcriptional co-activator FHL2 from the nucleus in stiff microenvironments. This establishes direct force-activated F-actin binding by FHL2 as a mechanosensing mechanism. Our studies suggest that force-dependent sequestration of LIM proteins on the actin cytoskeleton could be a general mechanism for controlling nuclear localization to effect mechanical signaling.


2019 ◽  
Vol 20 (6) ◽  
pp. 1303 ◽  
Author(s):  
Rui Yang ◽  
Ming Chen ◽  
Jian-Chang Sun ◽  
Yue Yu ◽  
Dong-Hong Min ◽  
...  

LIM proteins have been found to play important roles in many life activities, including the regulation of gene expression, construction of the cytoskeleton, signal transduction and metabolic regulation. Because of their important roles in many aspects of plant development, LIM genes have been studied in many plant species. However, the LIM gene family has not yet been characterized in foxtail millet. In this study, we analyzed the whole genome of foxtail millet and identified 10 LIM genes. All LIM gene promoters contain MYB and MYC cis-acting elements that are related to drought stress. Based on the presence of multiple abiotic stress-related cis-elements in the promoter of SiWLIM2b, we chose this gene for further study. We analyzed SiWLIM2b expression under abiotic stress and hormone treatments using qRT-PCR. We found that SiWLIM2b was induced by various abiotic stresses and hormones. Under drought conditions, transgenic rice of SiWLIM2b-overexpression had a higher survival rate, higher relative water content and less cell damage than wild type (WT) rice. These results indicate that overexpression of the foxtail millet SiWLIM2b gene enhances drought tolerance in transgenic rice, and the SiWLIM2b gene can potentially be used for molecular breeding of crops with increased resistance to abiotic stress.


Planta ◽  
2017 ◽  
Vol 246 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Vikas Srivastava ◽  
Praveen Kumar Verma
Keyword(s):  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaojie Xu ◽  
Zhongyi Fan ◽  
Chaoyang Liang ◽  
Ling Li ◽  
Lili Wang ◽  
...  

2016 ◽  
Vol 36 (20) ◽  
pp. 2526-2542 ◽  
Author(s):  
Radhika Jagannathan ◽  
Gregory V. Schimizzi ◽  
Kun Zhang ◽  
Andrew J. Loza ◽  
Norikazu Yabuta ◽  
...  

The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling duringDrosophilawing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed.


2016 ◽  
Vol 37 (3) ◽  
pp. 101-115 ◽  
Author(s):  
Francesca D’Avila ◽  
Mirella Meregalli ◽  
Sara Lupoli ◽  
Matteo Barcella ◽  
Alessandro Orro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document