Aggrephagy: lessons from C. elegans

2013 ◽  
Vol 452 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Qun Lu ◽  
Fan Wu ◽  
Hong Zhang

Autophagy is a lysosome-mediated degradation process that involves the formation of an enclosed double-membrane autophagosome. Yeast genetic screens have laid the groundwork for a molecular understanding of autophagy. The process, however, exhibits fundamental differences between yeast and higher eukaryotes. Very little is known about essential autophagy components specific to higher eukaryotes. Recent studies have shown that a variety of protein aggregates are selectively removed by autophagy (a process termed aggrephagy) during Caenorhabditis elegans embryogenesis, establishing C. elegans as a multicellular genetic model to delineate the autophagic machinery. The genetic screens were carried out in C. elegans to identify essential autophagy genes. In addition to conserved and divergent homologues of yeast Atg proteins, several autophagy genes conserved in higher eukaryotes, but absent from yeast, were isolated. The genetic hierarchy of autophagy genes in the degradation of protein aggregates in C. elegans provides a framework for understanding the concerted action of autophagy genes in the aggrephagy pathway.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ruben Prado ◽  
Gai-Linn Bessing ◽  
Nathaniel Snyder ◽  
Gurpalik Singh ◽  
Frank Yang ◽  
...  

Background and Hypothesis: Lyme disease is caused by the spirochaete bacteria from the Borrelia species. Recent studies suggest that Lyme disease may be associated with dementia, brain atrophy, and protein aggregates that may be associated with the development of neurodegenerative diseases such as Parkinson’s disease (PD) and Alzheimers disease (AD). The molecular basis of the Borrelia-associated innate immune response and associated neuropathology is poorly defined.  A significant hindrance in dissecting these molecular components is the lack of facile in vivo genetic models to explore the mechanisms involved in the neuropathology. Here we hypothesize that the nematode C. elegans will be a useful model for Borrelia-associated innate immunity and neuropathology.  Project Methods: We utilized transcriptional reporters, transgenic animals, neuronal morphology analysis, RNAi, host defense pathways, AD- and PD-associated pathologies, and behavior assays to determine the effect that Borrelia has on C. elegans viability.  Results: C. elegans can be infected and survive using Borrelia as a food source, and the bacteria can induce highly conserved innate immune response pathways, and exacerbate PD-associated dopamine neuronal death in human A53T -synuclein-expressing animals. C. elegans models expressing AD-associated human A 1-42 also show significant movement defects and increased protein aggregates when exposed to Borrelia.  Conclusions and Potential Impact: This study further characterizes a novel genetic model for Borrelia-associated innate immunity and neuropathology. Incorporating C. elegans genetic screens, this model should allow us to identify mediators of the Borrelia-associated pathologies that should facilitate the identification of molecular pathways and potential therapeutic targets.


2016 ◽  
Author(s):  
Andrea K. H. Stavoe ◽  
Sarah E. Hill ◽  
Daniel A. Colón-Ramos

SUMMARYAutophagy is a cellular degradation process essential for neuronal development and survival. Neurons are highly polarized cells in which autophagosome biogenesis is spatially compartmentalized. The mechanisms and physiological importance of this spatial compartmentalization of autophagy in the neuronal development of living animals are not well understood. Here we determine that, in C. elegans neurons, autophagosomes form near synapses and are required for neurodevelopment. We first determined, through unbiased genetic screens and systematic genetic analyses, that autophagy is required cell-autonomously for presynaptic assembly and for axon outgrowth dynamics in specific neurons. We observe autophagosomes in the axon near synapses, and this localization depends on the synaptic vesicle kinesin, KIF1A/UNC-104. KIF1A/UNC-104 coordinates localized autophagosome formation by regulating the transport of the integral membrane autophagy protein, ATG-9. Our findings indicate that autophagy is spatially regulated in neurons through the transport of ATG-9 by KIF1A/UNC-104 to regulate neurodevelopment.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2019 ◽  
Author(s):  
Elizabeth R. Cebul ◽  
Ian G. McLachlan ◽  
Maxwell G. Heiman

ABSTRACTDendrites develop elaborate morphologies in concert with surrounding glia, but the molecules that coordinate dendrite and glial morphogenesis are mostly unknown.C. elegansoffers a powerful model for identifying such factors. Previous work in this system examined dendrites and glia that develop within epithelia, similar to mammalian sense organs. Here, we focus on the neurons BAG and URX, which are not part of an epithelium but instead form membranous attachments to a single glial cell at the nose, reminiscent of dendrite-glia contacts in the mammalian brain. We show that these dendrites develop by retrograde extension, in which the nascent dendrite endings anchor to the presumptive nose and then extend by stretch during embryo elongation. Using forward genetic screens, we find that dendrite development requires the adhesion protein SAX-7/L1CAM and the cytoplasmic protein GRDN-1/CCDC88C to anchor dendrite endings at the nose. SAX-7 acts in neurons and glia, while GRDN-1 acts in glia to non-autonomously promote dendrite extension. Thus, this work shows how glial factors can help to shape dendrites, and identifies a novel molecular mechanism for dendrite growth by retrograde extension.


Author(s):  
Sanjib Guha ◽  
Sarah Fischer ◽  
Gail VW Johnson ◽  
Keith Nehrke

ABSTRACTBackgroundA defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear.MethodsHuman 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E and T231A, to mimic phosphorylation and phospho-ablation of a commonly observed pathological epitope, respectively, and K274/281Q, to mimic disease-associated lysine acetylation. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age, and genetically-encoded fluorescent biosensors were used to measure the morphological dynamics and turnover of touch neuron mitochondria.ResultsUnlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage mitophagy in response to mitochondrial stress.ConclusionsLimiting the expression of tau results in a genetic model where pathological modifications and age result in evolving phenotypes, which may more closely resemble the normal progression of AD. The finding that disease-associated PTMs suppress compensatory responses to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


2020 ◽  
Vol 295 (10) ◽  
pp. 3064-3079 ◽  
Author(s):  
Manuel Iburg ◽  
Dmytro Puchkov ◽  
Irving U. Rosas-Brugada ◽  
Linda Bergemann ◽  
Ulrike Rieprecht ◽  
...  

Small heat shock proteins (sHsps) are conserved, ubiquitous members of the proteostasis network. Canonically, they act as “holdases” and buffer unfolded or misfolded proteins against aggregation in an ATP-independent manner. Whereas bacteria and yeast each have only two sHsps in their genomes, this number is higher in metazoan genomes, suggesting a spatiotemporal and functional specialization in higher eukaryotes. Here, using recombinantly expressed and purified proteins, static light-scattering analysis, and disaggregation assays, we report that the noncanonical sHsp HSP-17 of Caenorhabditis elegans facilitates aggregation of model substrates, such as malate dehydrogenase (MDH), and inhibits disaggregation of luciferase in vitro. Experiments with fluorescently tagged HSP-17 under the control of its endogenous promoter revealed that HSP-17 is expressed in the digestive and excretory organs, where its overexpression promotes the aggregation of polyQ proteins and of the endogenous kinase KIN-19. Systemic depletion of hsp-17 shortens C. elegans lifespan and severely reduces fecundity and survival upon prolonged heat stress. HSP-17 is an abundant protein exhibiting opposing chaperone activities on different substrates, indicating that it is a selective protein aggregase with physiological roles in development, digestion, and osmoregulation.


Biology ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Silvia Vega-Rubín-de-Celis

Autophagy (self-eating) is an intracellular degradation process used by cells to keep a “clean house”; as it degrades abnormal or damaged proteins and organelles, it helps to fight infections and also provides energy in times of fasting or exercising. Autophagy also plays a role in cancer, although its precise function in each cancer type is still obscure, and whether autophagy plays a protecting (through the clearing of damaged organelles and protein aggregates and preventing DNA damage) or a promoting (by fueling the already stablished tumor) role in cancer remains to be fully characterized. Beclin 1, the mammalian ortholog of yeast Atg6/Vps30, is an essential autophagy protein and has been shown to play a role in tumor suppression. Here, an update of the tumorigenesis regulation by Beclin 1-dependent autophagy is provided.


2020 ◽  
Vol 8 (3) ◽  
pp. 17 ◽  
Author(s):  
Matthew Buechner ◽  
Zhe Yang ◽  
Hikmat Al-Hashimi

Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.


Sign in / Sign up

Export Citation Format

Share Document