scholarly journals even-skipped acts as a pair-rule gene in germ band stages of Tribolium development

2020 ◽  
Vol 462 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jiyun O ◽  
Chong Pyo Choe
Keyword(s):  
Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3747-3754 ◽  
Author(s):  
A. Vincent ◽  
J.T. Blankenship ◽  
E. Wieschaus

Genetic and molecular analyses of patterning of the Drosophila embryo have shown that the process of segmentation of the head is fundamentally different from the process of segmentation of the trunk. The cephalic furrow (CF), one of the first morphological manifestations of the patterning process, forms at the juxtaposition of these two patterning systems. We report here that the initial step in CF formation is a change in shape and apical positioning of a single row of cells. The anteroposterior position of these initiator cells may be defined by the overlapping expression of the head gap gene buttonhead (btd) and the primary pair-rule gene even-skipped (eve). Re-examination of the btd and eve phenotypes in live embryos indicated that both genes are required for CF formation. Further, Eve expression in initiator cells was found to be dependent upon btd activity. The control of eve expression by btd in these cells is the first indication of a new level of integrated regulation that interfaces the head and trunk segmentation systems. In conjunction with previous data on the btd and eve embryonic phenotypes, our results suggest that interaction between these two genes both controls initiation of a specific morphogenetic movement that separates two morphogenetic fields and contributes to patterning the hinge region that demarcates the procephalon from the segmented germ band.


Cell ◽  
1994 ◽  
Vol 77 (4) ◽  
pp. 587-598 ◽  
Author(s):  
Anna Levine ◽  
Ayelet Bashan-Ahrend ◽  
Ofra Budai-Hadrian ◽  
Devorah Gartenberg ◽  
Sophia Menasherow ◽  
...  
Keyword(s):  

1999 ◽  
Vol 112 (12) ◽  
pp. 2019-2032 ◽  
Author(s):  
A.D. Minet ◽  
B.P. Rubin ◽  
R.P. Tucker ◽  
S. Baumgartner ◽  
R. Chiquet-Ehrismann

The Drosophila gene ten-m is the first pair-rule gene not encoding a transcription factor, but an extracellular protein. We have characterized a highly conserved chicken homologue that we call teneurin-1. The C-terminal part harbors 26 repetitive sequence motifs termed YD-repeats. The YD-repeats are most similar to the core of the rhs elements of Escherichia coli. Related repeats in toxin A of Clostridium difficile are known to bind specific carbohydrates. We show that recombinantly expressed proteins containing the YD-repeats of teneurin-1 bind to heparin. Furthermore, heparin lyase treatment of extracts of cells expressing recombinant YD-repeat protein releases this protein from high molecular mass aggregates. In situ hybridization and immunostaining reveals teneurin-1 expression in neurons of the developing visual system of chicken and Drosophila. This phylogenetic conservation of neuronal expression from flies to birds implies fundamental roles for teneurin-1 in neurogenesis. This is supported by the neurite outgrowth occurring on substrates made of recombinant YD-repeat proteins, which can be inhibited by heparin. Database searches resulted in the identification of ESTs encoding at least three further members of the teneurin family of proteins. Furthermore, the human teneurin-1 gene could be identified on chromosome Xq24/25, a region implied in an X-linked mental retardation syndrome.


2013 ◽  
Vol 13 (1) ◽  
pp. 25 ◽  
Author(s):  
Andrew D Peel ◽  
Julia Schanda ◽  
Daniela Grossmann ◽  
Frank Ruge ◽  
Georg Oberhofer ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Robert J Tetley ◽  
Guy B Blanchard ◽  
Alexander G Fletcher ◽  
Richard J Adams ◽  
Bénédicte Sanson

Convergence and extension movements elongate tissues during development. Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental boundaries and two further boundaries within each parasegment, concomitant with a doubling of cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation, behaving as mechanical barriers and providing a mechanism for how cells remain ordered during GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling, suggesting pair-rule gene control. Our results are consistent with recent work showing that a combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for Myosin II polarization that we tested in a vertex-based simulation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Erik Clark ◽  
Michael Akam

The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.


Development ◽  
1989 ◽  
Vol 107 (2) ◽  
pp. 201-212 ◽  
Author(s):  
N.H. Patel ◽  
T.B. Kornberg ◽  
C.S. Goodman

We have used a monoclonal antibody that recognizes engrailed proteins to compare the process of segmentation in grasshopper, crayfish, and Drosophila. Drosophila embryos rapidly generate metameres during an embryonic stage characterized by the absence of cell division. In contrast, many other arthropod embryos, such as those of more primitive insects and crustaceans, generate metameres gradually and sequentially, as cell proliferation causes caudal elongation. In all three organisms, the pattern of engrailed expression at the segmented germ band stage is similar, and the parasegments are the first metameres to form. Nevertheless, the way in which the engrailed pattern is generated differs and reflects the differences in how these organisms generate their metameres. These differences call into question what role homologues of the Drosophila pair-rule segmentation genes might play in other arthropods that generate metameres sequentially.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 663-672 ◽  
Author(s):  
S.H. Vavra ◽  
S.B. Carroll

The examination of pair-rule gene expression in wild-type and segmentation mutant embryos has identified many, but not necessarily all, of the elements of the regulatory system that establish their periodic patterns. Here we have conducted a new type of search for previously unknown regulators of these genes by examining pair-rule gene expression in blastoderm embryos lacking parts of or entire chromosomes. This method has the advantage of direct inspection of abnormal pair-rule gene patterns without relying upon mutagenesis or interpretation of larval phenotypes for the identification of segmentation genes. From these experiments we conclude that: (i) most zygotically required regulators of the fushi tarazu (ftz), even-skipped (eve) and hairy (h) pair-rule genes have been identified, except for one or more loci we have uncovered on chromosome arm 2L; (ii) the repression of the ftz and eve genes in the anterior third of the embryo is under maternal, not zygotic control; and (iii) there are no general zygotically required activators of pair-rule gene expression. The results suggest that the molecular basis of pair-rule gene regulation can be pursued with greater confidence now that most key trans-acting factors are already in hand.


Sign in / Sign up

Export Citation Format

Share Document