Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells

2006 ◽  
Vol 312 (12) ◽  
pp. 2309-2324 ◽  
Author(s):  
Julie Grantham ◽  
Karen I. Brackley ◽  
Keith R. Willison
Cell Cycle ◽  
2011 ◽  
Vol 10 (20) ◽  
pp. 3505-3514 ◽  
Author(s):  
Ruth E. Gonzalez ◽  
Chang-Uk Lim ◽  
Kelly Cole ◽  
Christine Hanko Bianchini ◽  
Gary P. Schools ◽  
...  

2004 ◽  
Vol 165 (5) ◽  
pp. 609-615 ◽  
Author(s):  
Yumi Uetake ◽  
Greenfield Sluder

Failure of cells to cleave at the end of mitosis is dangerous to the organism because it immediately produces tetraploidy and centrosome amplification, which is thought to produce genetic imbalances. Using normal human and rat cells, we reexamined the basis for the attractive and increasingly accepted proposal that normal mammalian cells have a “tetraploidy checkpoint” that arrests binucleate cells in G1, thereby preventing their propagation. Using 10 μM cytochalasin to block cleavage, we confirm that most binucleate cells arrest in G1. However, when we use lower concentrations of cytochalasin, we find that binucleate cells undergo DNA synthesis and later proceed through mitosis in >80% of the cases for the hTERT-RPE1 human cell line, primary human fibroblasts, and the REF52 cell line. These observations provide a functional demonstration that the tetraploidy checkpoint does not exist in normal mammalian somatic cells.


2000 ◽  
Vol 113 (10) ◽  
pp. 1687-1694 ◽  
Author(s):  
F. Reymond ◽  
C. Wirbelauer ◽  
W. Krek

Present in organisms ranging from yeast to man, homologues of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme CDC34 have been shown to play important roles in the regulation of cell cycle progression and checkpoint function. Here we analyze the expression and intracellular localization of endogenous CDC34 during mammalian cell cycle progression. We find that CDC34 protein is constitutively expressed during all stages of the cell cycle. Immunofluorescence experiments reveal that during interphase, endogenous CDC34 is localized to distinct speckles in both the nucleus and the cytoplasm. The presence of CDC34 in these compartments has also been established by biochemical fractionation experiments. Interestingly, nuclear localization depends on the presence of specific carboxy-terminal CDC34 sequences that have previously been shown to be required for CDC34's cell cycle function in Saccharomyces cerevisiae. Finally, we find that in anaphase and not during early stages of mitosis, CDC34 colocalizes with (beta)-tubulin at the mitotic spindle, implying that it may contribute to spindle function at later stages of mitosis. Taken together, these results support a model in which CDC34 ubiquitin-conjugating enzyme functions in the regulation of nuclear and cytoplasmic activities as well as in the process of chromosome segregation at the onset of anaphase in mammalian cells.


2001 ◽  
Vol 114 (14) ◽  
pp. 2553-2560 ◽  
Author(s):  
Martin Alexander Schwartz ◽  
Richard K. Assoian

Cell cycle progression in mammalian cells is strictly regulated by both integrin-mediated adhesion to the extracellular matrix and by binding of growth factors to their receptors. This regulation is mediated by G1 phase cyclin-dependent kinases (CDKs), which are downstream of signaling pathways under the integrated control of both integrins and growth factor receptors. Recent advances demonstrate a surprisingly diverse array of integrin-dependent signals that are channeled into the regulation of the G1 phase CDKs. Regulation of cyclin D1 by the ERK pathway may provide a paradigm for understanding how cell adhesion can determine cell cycle progression.


2004 ◽  
Vol 279 (44) ◽  
pp. 46182-46190 ◽  
Author(s):  
Sefat-e- Khuda ◽  
Mikoto Yoshida ◽  
Yan Xing ◽  
Tatsuya Shimasaki ◽  
Motohiro Takeya ◽  
...  

SaccharomycesSac3 required for actin assembly was shown to be involved in DNA replication. Here, we studied the function of a mammalian homologue SHD1 in cell cycle progression. SHD1 is localized on centrosomes at interphase and at spindle poles and mitotic spindles, similar to α-tubulin, at M phase. RNA interference suppression of endogenousshd1caused defects in centrosome duplication and spindle formation displaying cells with a single apparent centrosome and down-regulated Mad2 expression, generating increased micronuclei. Conversely, increased expression of SHD1 by DNA transfection withshd1-green fluorescent protein (gfp) vector for a fusion protein of SHD1 and GFP caused abnormalities in centrosome duplication displaying cells with multiple centrosomes and deregulated spindle assembly with up-regulated Mad2 expression until anaphase, generating polyploidy cells. These results demonstrated thatshd1is involved in cell cycle progression, in particular centrosome duplication and a spindle assembly checkpoint function.


1997 ◽  
Vol 110 (24) ◽  
pp. 3083-3090 ◽  
Author(s):  
S.D. Gross ◽  
C. Simerly ◽  
G. Schatten ◽  
R.A. Anderson

Casein kinase I is a family of serine/threonine protein kinases common to all eukaryotes. In yeast, casein kinase I homologues have been linked to the regulation of growth, DNA repair and cell division. In addition, their subcellular localization to membraneous structures and the nucleus is essential for function. In higher eukaryotes, there exist seven genetically distinct isoforms: (alpha), ss, (gamma)1, (gamma)2, (gamma)3, (delta) and (epsilon). Casein kinase I(alpha) exhibits a cell cycle-dependent subcellular localization including an association with cytosolic vesicular structures and the nucleus during interphase, and the spindle during mitosis. casein kinase I has also been shown to modulate critical regulators of growth and DNA synthesis/repair in mammalian cells such as SV40 large T antigen and p53. These results suggest that casein kinase I may be involved in processes similar to those ascribed to the yeast casein kinase I homologues. To define a role for casein kinase I(alpha) in cell cycle regulation, the mouse oocyte was utilized because of its well-defined cell cycle and ease of micromanipulation. Immunofluorescence studies from meiosis I of maturation to the first zygotic cleavage demonstrated that the kinase was associated with structures similar to those previously reported. Microinjection of casein kinase I(alpha) antibodies at metaphase II-arrest and G2 phase, had no effect on the completion of second meiosis or first division. However, microinjection of these antibodies during the early pronucleate phase prior to S-phase onset blocked uptake of the kinase into pronuclei and interfered with proper and timely cell cycle progression to first cleavage. These results suggest that the kinase regulates the progression from interphase to mitosis during the first cell cycle.


2003 ◽  
Vol 23 (8) ◽  
pp. 2821-2833 ◽  
Author(s):  
Guang Gao ◽  
Adrian P. Bracken ◽  
Karina Burkard ◽  
Diego Pasini ◽  
Marie Classon ◽  
...  

ABSTRACT NPAT is an in vivo substrate of cyclin E-Cdk2 kinase and is thought to play a critical role in coordinated transcriptional activation of histone genes during the G1/S-phase transition and in S-phase entry in mammalian cells. Here we show that NPAT transcription is up-regulated at the G1/S-phase boundary in growth-stimulated cells and that the NPAT promoter responds to activation by E2F proteins. We demonstrate that endogenous E2F proteins interact with the promoter of the NPAT gene in vivo and that induced expression of E2F1 stimulates NPAT mRNA expression, supporting the idea that the expression of NPAT is regulated by E2F. Consistently, we find that the E2F sites in the NPAT promoter are required for its activation during the G1/S-phase transition. Moreover, we show that the expression of NPAT accelerates S-phase entry in cells released from quiescence. The inhibition of NPAT expression by small interfering RNA duplexes impedes cell cycle progression and histone gene expression in tissue culture cells. Thus, NPAT is an important E2F target that is required for cell cycle progression in mammalian cells. As NPAT is involved in the regulation of S-phase-specific histone gene transcription, our findings indicate that NPAT links E2F to the activation of S-phase-specific histone gene transcription.


Sign in / Sign up

Export Citation Format

Share Document