MiR-125b enhances autophagic flux to improve septic cardiomyopathy via targeting STAT3/HMGB1

2021 ◽  
pp. 112842
Author(s):  
Ying Yu ◽  
Wen-Xian Ou-Yang ◽  
Hui Zhang ◽  
Tao Jiang ◽  
Lian Tang ◽  
...  
Author(s):  
Runze Wang ◽  
Yuerong Xu ◽  
Wei Zhang ◽  
Yexian Fang ◽  
Tiqun Yang ◽  
...  

High morbidity and mortality are the most typical characteristics of septic cardiomyopathy. We aimed to reveal the role of miR-22 in septic cardiomyopathy and to explore the underlying mechanisms. miR-22 cardiac-specific knockout (miR-22cKO) mice and miR-22 cardiac-specific transgenic (miR-22cOE) mice were subjected to a cecal ligation and puncture (CLP) operation, while a sham operation was used in the control group. The echocardiogram results suggested that miR-22cKO CLP mice cardiac dysfunction was alleviated. The serum LDH and CK-MB were reduced in the miR-22cKO CLP mice. As expected, there was reduced apoptosis, increased autophagy and alleviated mitochondrial dysfunction in the miR-22cKO CLP mice, while it had contrary role in the miR-22cOE group. Inhibiting miR-22 promoted autophagy by increasing the LC3II/GAPDH ratio and decreasing the p62 level. Additionally, culturing primary cardiomyocytes with lipopolysaccharide (LPS) simulated sepsis-induced cardiomyopathy in vitro. Inhibiting miR-22 promoted autophagic flux confirmed by an increased LC3II/GAPDH ratio and reduced p62 protein level under bafilomycin A1 conditions. Knocking out miR-22 may exert a cardioprotective effect on sepsis by increasing autophagy and decreasing apoptosis via sirt1. Our results revealed that targeting miR-22 may become a new strategy for septic cardiomyopathy treatment.


2020 ◽  
Author(s):  
Daniel Herp ◽  
Johannes Ridinger ◽  
Dina Robaa ◽  
Stephen A. Shinsky ◽  
Karin Schmidtkunz ◽  
...  

Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, esp. cancer. First HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement e.g. in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of the other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like spermine or spermidine. Hence, it also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin labelled acetyl spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10 mediated spermidine deacetylation in-vitro. Among those are potent inhibitors of neuroblastoma colony growth in culture that show accumulation of lysosomes, implicating disturbance of autophagic flux.


2020 ◽  
Vol 16 ◽  
Author(s):  
Zhixiong Xie ◽  
Tianyu Zhang ◽  
Cheng Zhong

Background: During chemotherapy, drugs can damage cancer cells’ DNA and cytomembrane structure, and then induce cell death. However, autophagy can increase the chemotherapy resistance of cancer cells, reducing the effect of chemotherapy. Objective: To block the autophagic flux in cancer cells, it is vital to enhance the anti-cancer efficacy of chemotherapy drugs; for this purpose, we test the gadolinium oxide nanoparticles (Gd2O3 NPs)’ effect on autophagy. Methods: The cytotoxicity of Gd2O3 NPs on HeLa cells was evaluated by a (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Then, monodasylcadaverine staining, immunofluorescence, immunoblot and apoptosis assay were conducted to evaluate the effect of Gd2O3 NPs on autophagy and efficacy of chemotherapy drugs in human ovarian cancer cells. Results: We found that Gd2O3 NPs, which have great potential for use as a contrast agent in magnetic resonance imaging, could block the late stage of autophagic flux in a dose-dependent manner and then cause autophagosome accumulation in HeLa cells. When co-treated with 8 μg/mL Gd2O3 NPs and 5 μg/mL cisplatin, the number of dead HeLa cells increased by about 20% compared with cisplatin alone. We observed the same phenomenon in cisplatin-resistant COC1/DDP cells. Conclusion: We conclude that Gd2O3 NPs can block the late stage of autophagic flux and enhance the cytotoxicity of chemotherapeutic drugs in human ovarian cancer cells. Thus, the nanoparticles have significant potential for use in both diagnosis and therapy of solid tumor.


Sign in / Sign up

Export Citation Format

Share Document