High feather corticosterone indicates better coccidian infection resistance in greenfinches

2014 ◽  
Vol 204 ◽  
pp. 203-210 ◽  
Author(s):  
Elin Sild ◽  
Richard Meitern ◽  
Marju Männiste ◽  
Ulvi Karu ◽  
Peeter Hõrak
2018 ◽  
Vol 24 (8) ◽  
pp. 886-895 ◽  
Author(s):  
Tengzhou Xu ◽  
Zhou Chen ◽  
Zhaofeng Chen ◽  
Yuxin Fan ◽  
Haifeng Mao

Infections caused by microbial proliferation are one of the common issues and serious threats to the medical care, and they usually result in disease spread. Therefore, it is a significant issue for developing the antiinfective biomaterials to control this problem, according to the specific clinical application. Meanwhile, all their properties, the best anti-infective performance, the safe biocompatibility and the appropriate tissue interactions must be conformed to each other. At present, technologies are developing novel biomaterials and surfaces endowed with anti-infective properties, relying either on bactericidal or anti-biofilm activities. This review focuses on thoroughly summarizing numerous kinds of antibacterial biomaterials, including the antibacterial matrix biomaterials, antibacterial coatings and films, nanostructured materials and antibacterial fibers. Among these strategies, the utilization of bio-glass base and graphene base antibacterial matrix, and their effects on the antibiosis mechanism were emphatically discussed. Simultaneously, the effects and mechanisms of nano-coated metallic ions are also mentioned. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of antibacterial biomaterials.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 123
Author(s):  
María Bernad-Roche ◽  
Alejandro Casanova-Higes ◽  
Clara M. Marín-Alcalá ◽  
Alberto Cebollada-Solanas ◽  
Raúl C. Mainar-Jaime

Few studies have focused on assessing Salmonella infection in the nursery and its role in further pig production periods. Mesenteric lymph nodes, intestinal content, and meat juice from 389 6-week-old male piglets intended for human consumption from five breeding farms and 191 pooled floor fecal samples from gilt development units (GDU) from the same farms were analyzed to estimate and characterize (by pulsed-field gel electrophoresis and antimicrobial resistance analyses) Salmonella infection. The prevalence of infection and shedding among piglets was 36.5% and 37.3%, respectively, shedding being significantly associated with infection (Odds Ratio = 12.7; CI 7.3–22.0). Salmonella Rissen; S. 4,[5],12:i:-; and S. Derby were the most common serotypes. A low level of Salmonella-specific maternal antibodies at the beginning of the nursery period suggested it was a period of high risk of infection. Resistance to 3rd- and 4th-generation cephalosporins was detected in piglet isolates although the piglets never received antibiotics, indicating they could be vectors of antimicrobial resistance. The same Salmonella clones were detected in piglet and GDU isolates, suggesting that infected piglets play a significant role in the infection of gilts and consequently of finishing pigs in the case of production farms. The control of Salmonella infection in nursery piglets may decrease the risk of abattoir and carcass contamination.


2018 ◽  
Vol 124 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Tuul Sepp ◽  
Steve Desaivre ◽  
Adam Z Lendvai ◽  
József Németh ◽  
Kevin J McGraw ◽  
...  

1984 ◽  
Vol 43 (2) ◽  
pp. 207-217 ◽  
Author(s):  
J.Frank Morado ◽  
Albert K. Sparks ◽  
Susan K. Reed

2020 ◽  
Vol 117 (42) ◽  
pp. 26382-26388 ◽  
Author(s):  
Angela M. Bosco-Lauth ◽  
Airn E. Hartwig ◽  
Stephanie M. Porter ◽  
Paul W. Gordy ◽  
Mary Nehring ◽  
...  

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is probable that this novel virus has a similar host range and receptor specificity. Due to concern for human–pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats developed a robust neutralizing antibody response that prevented reinfection following a second viral challenge. Conversely, we found that dogs do not shed virus following infection but do seroconvert and mount an antiviral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human infection; however, reverse zoonosis is possible if infected owners expose their domestic pets to the virus during acute infection. Resistance to reinfection holds promise that a vaccine strategy may protect cats and, by extension, humans.


2022 ◽  
Vol 23 (1) ◽  
pp. 567
Author(s):  
Jin-Quan Fan ◽  
Bin-Bin Li ◽  
Qian-Ming Hong ◽  
Ze-Yu Yan ◽  
Xin-Jun Yang ◽  
...  

In shrimp, several glutathione peroxidase (GPX) genes have been cloned and functionally studied. Increasing evidence suggests the genes’ involvement in white spot syndrome virus (WSSV)- or Vibrio alginolyticus-infection resistance. In the present study, a novel GXP gene (LvGPX3) was cloned in Litopenaeus vannamei. Promoter of LvGPX3 was activated by NF-E2-related factor 2. Further study showed that LvGPX3 expression was evidently accelerated by oxidative stress or WSSV or V. alginolyticus infection. Consistently, downregulated expression of LvGPX3 increased the cumulative mortality of WSSV- or V. alginolyticus-infected shrimp. Similar results occurred in shrimp suffering from oxidative stress. Moreover, LvGPX3 was important for enhancing Antimicrobial peptide (AMP) gene expression in S2 cells with lipopolysaccharide treatment. Further, knockdown of LvGPX3 expression significantly suppressed expression of AMPs, such as Penaeidins 2a, Penaeidins 3a and anti-lipopolysaccharide factor 1 in shrimp. AMPs have been proven to be engaged in shrimp WSSV- or V. alginolyticus-infection resistance; it was inferred that LvGPX3 might enhance shrimp immune response under immune challenges, such as increasing expression of AMPs. The regulation mechanism remains to be further studied.


Sign in / Sign up

Export Citation Format

Share Document