scholarly journals A Glutathione Peroxidase Gene from Litopenaeus vannamei Is Involved in Oxidative Stress Responses and Pathogen Infection Resistance

2022 ◽  
Vol 23 (1) ◽  
pp. 567
Author(s):  
Jin-Quan Fan ◽  
Bin-Bin Li ◽  
Qian-Ming Hong ◽  
Ze-Yu Yan ◽  
Xin-Jun Yang ◽  
...  

In shrimp, several glutathione peroxidase (GPX) genes have been cloned and functionally studied. Increasing evidence suggests the genes’ involvement in white spot syndrome virus (WSSV)- or Vibrio alginolyticus-infection resistance. In the present study, a novel GXP gene (LvGPX3) was cloned in Litopenaeus vannamei. Promoter of LvGPX3 was activated by NF-E2-related factor 2. Further study showed that LvGPX3 expression was evidently accelerated by oxidative stress or WSSV or V. alginolyticus infection. Consistently, downregulated expression of LvGPX3 increased the cumulative mortality of WSSV- or V. alginolyticus-infected shrimp. Similar results occurred in shrimp suffering from oxidative stress. Moreover, LvGPX3 was important for enhancing Antimicrobial peptide (AMP) gene expression in S2 cells with lipopolysaccharide treatment. Further, knockdown of LvGPX3 expression significantly suppressed expression of AMPs, such as Penaeidins 2a, Penaeidins 3a and anti-lipopolysaccharide factor 1 in shrimp. AMPs have been proven to be engaged in shrimp WSSV- or V. alginolyticus-infection resistance; it was inferred that LvGPX3 might enhance shrimp immune response under immune challenges, such as increasing expression of AMPs. The regulation mechanism remains to be further studied.

Author(s):  
Metti K. Gari ◽  
Paul Lemke ◽  
Kelly H. Lu ◽  
Elizabeth D. Laudadio ◽  
Austin H. Henke ◽  
...  

Lithium cobalt oxide (LiCoO2), an example of nanoscale transition metal oxide and a widely commercialized cathode material in lithium ion batteries, has been shown to induce oxidative stress and generate intracellular reactive oxygen species (ROS) in model organisms.


Author(s):  
Huaming He ◽  
Jordi Denecker ◽  
Katrien Van Der Kelen ◽  
Patrick Willems ◽  
Robin Pottie ◽  
...  

Abstract Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2021 ◽  
Vol 72 (8) ◽  
pp. 3294-3306
Author(s):  
Ariel M Hughes ◽  
H Tucker Hallmark ◽  
Lenka Plačková ◽  
Ondrej Novák ◽  
Aaron M Rashotte

Abstract Cytokinin response factors (CRFs) are transcription factors that are involved in cytokinin (CK) response, as well as being linked to abiotic stress tolerance. In particular, oxidative stress responses are activated by Clade III CRF members, such as AtCRF6. Here we explored the relationships between Clade III CRFs and oxidative stress. Transcriptomic responses to oxidative stress were determined in two Clade III transcription factors, Arabidopsis AtCRF5 and tomato SlCRF5. AtCRF5 was required for regulated expression of >240 genes that are involved in oxidative stress response. Similarly, SlCRF5 was involved in the regulated expression of nearly 420 oxidative stress response genes. Similarities in gene regulation by these Clade III members in response to oxidative stress were observed between Arabidopsis and tomato, as indicated by Gene Ontology term enrichment. CK levels were also changed in response to oxidative stress in both species. These changes were regulated by Clade III CRFs. Taken together, these findings suggest that Clade III CRFs play a role in oxidative stress response as well as having roles in CK signaling.


2004 ◽  
Vol 41 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Pascal Rey ◽  
Stéphan Cuiné ◽  
Françoise Eymery ◽  
Jérome Garin ◽  
Magali Court ◽  
...  

2015 ◽  
Vol 72 (8) ◽  
pp. 1500-1507 ◽  
Author(s):  
Fujie Yan ◽  
Hao Hu ◽  
Laifeng Lu ◽  
Xiaodong Zheng

Sign in / Sign up

Export Citation Format

Share Document