Hypoxia promotes vasculogenic mimicry formation by inducing epithelial–mesenchymal transition in ovarian carcinoma

2014 ◽  
Vol 133 (3) ◽  
pp. 575-583 ◽  
Author(s):  
Jing Du ◽  
Baocun Sun ◽  
Xiulan Zhao ◽  
Qiang Gu ◽  
Xueyi Dong ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1232 ◽  
Author(s):  
Paola Orecchia ◽  
Enrica Balza ◽  
Gabriella Pietra ◽  
Romana Conte ◽  
Nicolò Bizzarri ◽  
...  

Epithelial ovarian cancer (EOC) is the fifth most common cancer affecting the female population. At present, different targeted treatment approaches may improve currently employed therapies leading either to the delay of tumor recurrence or to disease stabilization. In this study we show that syndecan-1 (SDC1) and tumor angiogenic-associated B-fibronectin isoform (B-FN) are involved in EOC progression and we describe the prominent role of SDC1 in the vasculogenic mimicry (VM) process. We also investigate a possible employment of L19-IL2, an immunocytokine specific for B-FN, and anti-SDC1 46F2SIP (small immuno protein) antibody in combination therapy in a human ovarian carcinoma model. A tumor growth reduction of 78% was obtained in the 46F2SIP/L19-IL2-treated group compared to the control group. We observed that combined treatment was effective in modulation of epithelial-mesenchymal transition (EMT) markers, loss of stemness properties of tumor cells, and in alleviating hypoxia. These effects correlated with reduction of VM structures in tumors from treated mice. Interestingly, the improved pericyte coverage in vascular structures suggested that combined therapy could be efficacious in induction of vessel normalization. These data could pave the way for a possible use of L19-IL2 combined with 46F2SIP antibody as a novel therapeutic strategy in EOC.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Wei Li ◽  
Yubo Zhou

AbstractIntratumoral hypoxia is a well-known feature of solid cancers and constitutes a major contributor to cancer metastasis and poor outcomes including melanoma. Leucine-rich repeats and Ig-like domains 1 (LRIG1) participate in the aggressive progression of several tumors, where its expression is frequently decreased. In the present study, hypoxia exposure aggravated melanoma cell invasion, migration, vasculogenic mimicry (VM), and epithelial–mesenchymal transition (EMT). During this process, LRIG1 expression was also decreased. Importantly, overexpression of LRIG1 notably counteracted hypoxia-induced invasion, migration, and VM, which was further augmented after LRIG1 inhibition. Mechanism analysis corroborated that LRIG1 elevation muted hypoxia-induced EMT by suppressing E-cadherin expression and increasing N-cadherin expression. Conversely, cessation of LRIG1 further potentiated hypoxia-triggered EMT. Additionally, hypoxia stimulation activated the epidermal growth factor receptor (EGFR)/ERK pathway, which was dampened by LRIG1 up-regulation but further activated by LRIG1 inhibition. More important, blocking this pathway with its antagonist erlotinib abrogated LRIG1 suppression-induced EMT, and subsequently cell invasion, migration, and VM of melanoma cells under hypoxia. Together, these findings suggest that LRIG1 overexpression can antagonize hypoxia-evoked aggressive metastatic phenotype by suppressing cell invasion, migration, and VM via regulating EGFR/ERK-mediated EMT process. Therefore, these findings may provide a promising target for melanoma therapy.


Sign in / Sign up

Export Citation Format

Share Document