scholarly journals L19-IL2 Immunocytokine in Combination with the Anti-Syndecan-1 46F2SIP Antibody Format: A New Targeted Treatment Approach in an Ovarian Carcinoma Model

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1232 ◽  
Author(s):  
Paola Orecchia ◽  
Enrica Balza ◽  
Gabriella Pietra ◽  
Romana Conte ◽  
Nicolò Bizzarri ◽  
...  

Epithelial ovarian cancer (EOC) is the fifth most common cancer affecting the female population. At present, different targeted treatment approaches may improve currently employed therapies leading either to the delay of tumor recurrence or to disease stabilization. In this study we show that syndecan-1 (SDC1) and tumor angiogenic-associated B-fibronectin isoform (B-FN) are involved in EOC progression and we describe the prominent role of SDC1 in the vasculogenic mimicry (VM) process. We also investigate a possible employment of L19-IL2, an immunocytokine specific for B-FN, and anti-SDC1 46F2SIP (small immuno protein) antibody in combination therapy in a human ovarian carcinoma model. A tumor growth reduction of 78% was obtained in the 46F2SIP/L19-IL2-treated group compared to the control group. We observed that combined treatment was effective in modulation of epithelial-mesenchymal transition (EMT) markers, loss of stemness properties of tumor cells, and in alleviating hypoxia. These effects correlated with reduction of VM structures in tumors from treated mice. Interestingly, the improved pericyte coverage in vascular structures suggested that combined therapy could be efficacious in induction of vessel normalization. These data could pave the way for a possible use of L19-IL2 combined with 46F2SIP antibody as a novel therapeutic strategy in EOC.

2020 ◽  
Vol 21 (12) ◽  
pp. 4242
Author(s):  
Sandeep Dhall ◽  
Anne Lerch ◽  
Nicholas Johnson ◽  
Vimal Jacob ◽  
Brielle Jones ◽  
...  

Fibrosis, the thickening and scarring of injured connective tissue, leads to a loss of organ function. Multiple cell types, including T-cells, macrophages, fibrocytes, and fibroblasts/myofibroblasts contribute to scar formation via secretion of inflammatory factors. This event results in an increase in oxidative stress and deposition of excessive extracellular matrix (ECM), characteristic of fibrosis. Further, aging is known to predispose connective tissue to fibrosis due to reduced tissue regeneration. In this study, we investigated the anti-fibrotic activity of a flowable placental formulation (FPF) using a bleomycin-induced dermal fibrosis model in aged mice. FPF consisted of placental amnion/chorion- and umbilical tissue-derived ECM and cells. The mice were injected with either FPF or PBS, followed by multiple doses of bleomycin. Histological assessment of FPF-treated skin samples revealed reduced dermal fibrosis, inflammation, and TGF-β signaling compared to the control group. Quantitative RT-PCR and Next Generation Sequencing analysis of miRNAs further confirmed anti-fibrotic changes in the FPF-treated group at both the gene and transcriptional levels. The observed modulation in miRNAs was associated with inflammation, TGF-β signaling, fibroblast proliferation, epithelial-mesenchymal transition and ECM deposition. These results demonstrate the potential of FPF in preventing fibrosis and may be of therapeutic benefit for those at higher risk of fibrosis due to wounds, aging, exposure to radiation and genetic predisposition.


2014 ◽  
Vol 133 (3) ◽  
pp. 575-583 ◽  
Author(s):  
Jing Du ◽  
Baocun Sun ◽  
Xiulan Zhao ◽  
Qiang Gu ◽  
Xueyi Dong ◽  
...  

2017 ◽  
Vol 63 (3) ◽  
pp. 466-469
Author(s):  
Luiza Korytova ◽  
Aleksey Meshechkin ◽  
Oleg Korytov ◽  
V. Krasnikova

Objective was to establish efficiency of sodium nucleospermat in correcting thrombocytopenia after chemoradiotherapy in oncological patients. Methods and materials. The study included data on 32 patients that had undergone combined treatment from January till May 2016. After detecting thrombocytopenia patients were randomized into two groups (16 patients in each): treated group, where patients received sodium nucleospermat, and control group, where sodium nucleospermat was not used. Thrombocyte level control was done on 5th, 10th and 15th day after treatment was over. Results and discussion. All 16 patients showed positive dynamics in increasing thrombocyte level after Sodium nucleospermat injection course was finished. This was proven by first (5th day) blood analysis. On average thrombocyte level after sodium nucleospermat treatment has risen to normal, at 161х109/1. Only 3 patients from this group had to pause radiotherapy for 5 days. Control group patients, which did not receive sodium nucleospermat, showed evidence of thrombocyte level recovery by 10th day only. On average thrombocyte level increase was insignificant, and median number was 111*109/l. Low thrombocyte level was main reason to pause radiotherapy for 11 (69%) patients in control group. Conclusion. Sodium nucleospermat allowed raising thrombocyte level to the lower normal range, which surpassed by 40%-50% in control group patients. Use of sodium nucleospermat did not show any cases of allergic reactions, toxicity or complications in oncological patients.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. E. Anselmino ◽  
M. V. Baglioni ◽  
F. Malizia ◽  
N. Cesatti Laluce ◽  
C. Borini Etichetti ◽  
...  

AbstractDrug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Wei Li ◽  
Yubo Zhou

AbstractIntratumoral hypoxia is a well-known feature of solid cancers and constitutes a major contributor to cancer metastasis and poor outcomes including melanoma. Leucine-rich repeats and Ig-like domains 1 (LRIG1) participate in the aggressive progression of several tumors, where its expression is frequently decreased. In the present study, hypoxia exposure aggravated melanoma cell invasion, migration, vasculogenic mimicry (VM), and epithelial–mesenchymal transition (EMT). During this process, LRIG1 expression was also decreased. Importantly, overexpression of LRIG1 notably counteracted hypoxia-induced invasion, migration, and VM, which was further augmented after LRIG1 inhibition. Mechanism analysis corroborated that LRIG1 elevation muted hypoxia-induced EMT by suppressing E-cadherin expression and increasing N-cadherin expression. Conversely, cessation of LRIG1 further potentiated hypoxia-triggered EMT. Additionally, hypoxia stimulation activated the epidermal growth factor receptor (EGFR)/ERK pathway, which was dampened by LRIG1 up-regulation but further activated by LRIG1 inhibition. More important, blocking this pathway with its antagonist erlotinib abrogated LRIG1 suppression-induced EMT, and subsequently cell invasion, migration, and VM of melanoma cells under hypoxia. Together, these findings suggest that LRIG1 overexpression can antagonize hypoxia-evoked aggressive metastatic phenotype by suppressing cell invasion, migration, and VM via regulating EGFR/ERK-mediated EMT process. Therefore, these findings may provide a promising target for melanoma therapy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


2019 ◽  
Vol 244 (2) ◽  
pp. 83-99 ◽  
Author(s):  
Pei-Ling Hsu ◽  
Jonathan Jou ◽  
Shaw-Jenq Tsai

TYRO3 belongs to the TAM (TYRO3, AXL, and MER) receptor family, a unique subfamily of the receptor tyrosine kinases. Members of TAM family share the same ligand, growth arrest-specific 6, and protein S. Although the signal transduction pathways of TYRO3 have not been evaluated in detail, overexpression and activation of TYRO3 receptor tyrosine kinase have been reported to promote cell proliferation, survival, tumorigenesis, migration, invasion, epithelial-mesenchymal transition, or chemoresistance in several human cancers. Targeting TYRO3 could break the kinase signaling, stimulate antitumor immunity, reduce tumor cell survival, and regain drug sensitivity. To date, there is no specific TYRO3-targeted drug, the effectiveness of targeting TYRO3 in cancer is worthy of further investigations. In this review, we present an update on molecular biology of TYRO3, summarize the development of potential inhibitors of TAM family members, and provide new insights in TYRO3-targeted treatment. Impact statement Cancer is among the leading causes of death worldwide. In 2016, 8.9 million people are estimated to have died from various forms of cancer. The current treatments, including surgery with chemotherapy and/or radiation therapy, are not effective enough to provide full protection from cancer, which highlights the need for developing novel therapy strategies. In this review, we summarize the molecular biology of a unique member of a subfamily of receptor tyrosine kinase, TYRO3 and discuss the new insights in TYRO3-targeted treatment for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document